module A201607.BasicIS4.Semantics.BasicKripkeEwald where
open import A201607.BasicIS4.Syntax.Common public
record Model : Set₁ where
infix 3 _⊩ᵅ_
field
World : Set
_≤_ : World → World → Set
refl≤ : ∀ {w} → w ≤ w
trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″
_R_ : World → World → Set
reflR : ∀ {w} → w R w
transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″
_⊩ᵅ_ : World → Atom → Set
mono⊩ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P
_≤⨾R_ : World → World → Set
_≤⨾R_ = _≤_ ⨾ _R_
_R⨾≤_ : World → World → Set
_R⨾≤_ = _R_ ⨾ _≤_
_≤⊓R_ : World → World → Set
_≤⊓R_ = _≤_ ⊓ _R_
_≤⊔R_ : World → World → Set
_≤⊔R_ = _≤_ ⊔ _R_
field
≤⊓R→≤⊔R : ∀ {v w′} → w′ ≤⊓R v → v ≤⊔R w′
field
R⨾≤→≤⨾R : ∀ {w v′} → w R⨾≤ v′ → w ≤⨾R v′
refl≤⨾R : ∀ {w} → w ≤⨾R w
refl≤⨾R {w} = w , (refl≤ , reflR)
trans≤⨾R : ∀ {w′ w w″} → w ≤⨾R w′ → w′ ≤⨾R w″ → w ≤⨾R w″
trans≤⨾R {w′} (v , (ξ , ζ)) (v′ , (ξ′ , ζ′)) = let v″ , (ξ″ , ζ″) = R⨾≤→≤⨾R (w′ , (ζ , ξ′))
in v″ , (trans≤ ξ ξ″ , transR ζ″ ζ′)
open Model {{…}} public
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : World → Ty → Set
w ⊩ α P = w ⊩ᵅ P
w ⊩ A ▻ B = ∀ {w′ : World} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B
w ⊩ □ A = ∀ {w′ : World} → w ≤ w′ → ∀ {v′} → w′ R v′ → v′ ⊩ A
w ⊩ A ∧ B = w ⊩ A × w ⊩ B
w ⊩ ⊤ = 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : World → Cx Ty → Set
w ⊩⋆ ∅ = 𝟙
w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A
module _ {{_ : Model}} where
mono⊩ : ∀ {A} {w w′ : World} → w ≤ w′ → w ⊩ A → w′ ⊩ A
mono⊩ {α P} ξ s = mono⊩ᵅ ξ s
mono⊩ {A ▻ B} ξ s = λ ξ′ a → s (trans≤ ξ ξ′) a
mono⊩ {□ A} ξ s = λ ξ′ ζ → s (trans≤ ξ ξ′) ζ
mono⊩ {A ∧ B} ξ s = mono⊩ {A} ξ (π₁ s) , mono⊩ {B} ξ (π₂ s)
mono⊩ {⊤} ξ s = ∙
mono⊩⋆ : ∀ {Γ} {w w′ : World} → w ≤ w′ → w ⊩⋆ Γ → w′ ⊩⋆ Γ
mono⊩⋆ {∅} ξ ∙ = ∙
mono⊩⋆ {Γ , A} ξ (γ , a) = mono⊩⋆ {Γ} ξ γ , mono⊩ {A} ξ a
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B} {w : World} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B
s ⟪$⟫ a = s refl≤ a
⟪K⟫ : ∀ {A B} {w : World} → w ⊩ A → w ⊩ B ▻ A
⟪K⟫ {A} a ξ = K (mono⊩ {A} ξ a)
⟪S⟫ : ∀ {A B C} {w : World} → w ⊩ A ▻ B ▻ C → w ⊩ A ▻ B → w ⊩ A → w ⊩ C
⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a)
⟪S⟫′ : ∀ {A B C} {w : World} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ ξ s₂ ξ′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁
s₂′ = mono⊩ {A ▻ B} ξ′ s₂
in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a
_⟪D⟫_ : ∀ {A B} {w : World} → w ⊩ □ (A ▻ B) → w ⊩ □ A → w ⊩ □ B
_⟪D⟫_ {A} {B} s₁ s₂ ξ ζ = let s₁′ = s₁ ξ ζ
s₂′ = s₂ ξ ζ
in _⟪$⟫_ {A} {B} s₁′ s₂′
_⟪D⟫′_ : ∀ {A B} {w : World} → w ⊩ □ (A ▻ B) → w ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ ξ = _⟪D⟫_ {A} {B} (mono⊩ {□ (A ▻ B)} ξ s₁)
⟪↑⟫ : ∀ {A} {w : World} → w ⊩ □ A → w ⊩ □ □ A
⟪↑⟫ s ξ ζ ξ′ ζ′ = let _ , (ξ″ , ζ″) = trans≤⨾R (_ , (ξ , ζ)) (_ , (ξ′ , ζ′))
in s ξ″ ζ″
⟪↓⟫ : ∀ {A} {w : World} → w ⊩ □ A → w ⊩ A
⟪↓⟫ s = s refl≤ reflR
_⟪,⟫′_ : ∀ {A B} {w : World} → w ⊩ A → w ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} {B} a ξ = _,_ (mono⊩ {A} ξ a)
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : World → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ
infix 3 _⁏_⊨_
_⁏_⊨_ : Cx Ty → Cx Ty → Ty → Set₁
Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w : World}
→ w ⊩⋆ Γ → (∀ {w′ : World} → w ≤ w′ → ∀ {v′ : World} → w′ R v′ → v′ ⊩⋆ Δ) → w ⊩ A
module _ {{_ : Model}} where
lookup : ∀ {A Γ} {w : World} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ