module A201607.BasicIS4.Metatheory.Hilbert-TarskiClosedOvergluedImplicit where
open import A201607.BasicIS4.Syntax.Hilbert public
open import A201607.BasicIS4.Semantics.TarskiClosedOvergluedImplicit public
open ImplicitSyntax (∅ ⊢_) public
module _ {{_ : Model}} where
reify : ∀ {A} → ⊩ A → ∅ ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn s
reify {□ A} s = syn s
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A
⟪K⟫ a = app ck (reify a) ⅋ K a
⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ →
app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂
_⟪D⟫_ : ∀ {A B} → ⊩ □ (A ▻ B) → ⊩ □ A → ⊩ □ B
(t ⅋ s) ⟪D⟫ (u ⅋ a) = app (app cdist t) u ⅋ s ⟪$⟫ a
_⟪D⟫′_ : ∀ {A B} → ⊩ □ (A ▻ B) → ⊩ □ A ▻ □ B
_⟪D⟫′_ s = app cdist (reify s) ⅋ _⟪D⟫_ s
⟪↑⟫ : ∀ {A} → ⊩ □ A → ⊩ □ □ A
⟪↑⟫ s = box (syn s) ⅋ s
_⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B
_⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a
module _ {{_ : Model}} where
_⟦D⟧_ : ∀ {A B Γ} → ⊩ Γ ⇒ □ (A ▻ B) → ⊩ Γ ⇒ □ A → ⊩ Γ ⇒ □ B
(s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ)
⟦↑⟧ : ∀ {A Γ} → ⊩ Γ ⇒ □ A → ⊩ Γ ⇒ □ □ A
⟦↑⟧ s γ = ⟪↑⟫ (s γ)
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = ci ⅋ I
eval ck γ = ck ⅋ ⟪K⟫
eval cs γ = cs ⅋ ⟪S⟫′
eval (box t) γ = box t ⅋ eval t ∙
eval cdist γ = cdist ⅋ _⟪D⟫′_
eval cup γ = cup ⅋ ⟪↑⟫
eval cdown γ = cdown ⅋ ⟪↓⟫
eval cpair γ = cpair ⅋ _⟪,⟫′_
eval cfst γ = cfst ⅋ π₁
eval csnd γ = csnd ⅋ π₂
eval unit γ = ∙
eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′
eval✓ refl⋙ = refl
eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q)
eval✓ (sym⋙ p) = sym (eval✓ p)
eval✓ (congapp⋙ p q) = cong² _⟦$⟧_ (eval✓ p) (eval✓ q)
eval✓ (congi⋙ p) = cong I (eval✓ p)
eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q)
eval✓ (congs⋙ p q r) = cong³ ⟦S⟧ (eval✓ p) (eval✓ q) (eval✓ r)
eval✓ (congdist⋙ p q) = cong² _⟦D⟧_ (eval✓ p) (eval✓ q)
eval✓ (congup⋙ p) = cong ⟦↑⟧ (eval✓ p)
eval✓ (congdown⋙ p) = cong ⟦↓⟧ (eval✓ p)
eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p)
eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p)
eval✓ beta▻ₖ⋙ = refl
eval✓ beta▻ₛ⋙ = refl
eval✓ beta∧₁⋙ = refl
eval✓ beta∧₂⋙ = refl
eval✓ eta∧⋙ = refl
eval✓ eta⊤⋙ = refl
private
instance
canon : Model
canon = record
{ ⊩ᵅ_ = λ P → ∅ ⊢ α P
}
quot₀ : ∀ {A} → ∅ ⊨ A → ∅ ⊢ A
quot₀ t = reify (t ∙)
norm₀ : ∀ {A} → ∅ ⊢ A → ∅ ⊢ A
norm₀ = quot₀ ∘ eval