module A201607.BasicIS4.Metatheory.DyadicHilbert-TarskiOvergluedDyadicHilbert where
open import A201607.BasicIS4.Syntax.DyadicHilbert public
open import A201607.BasicIS4.Semantics.TarskiOvergluedDyadicHilbert public
module _ {{_ : Model}} where
[_] : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ [⊢] A
[ var i ] = [var] i
[ app t u ] = [app] [ t ] [ u ]
[ ci ] = [ci]
[ ck ] = [ck]
[ cs ] = [cs]
[ mvar i ] = [mvar] i
[ box t ] = [box] [ t ]
[ cdist ] = [cdist]
[ cup ] = [cup]
[ cdown ] = [cdown]
[ cpair ] = [cpair]
[ cfst ] = [cfst]
[ csnd ] = [csnd]
[ unit ] = [unit]
eval : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
eval (var i) γ δ = lookup i γ
eval (app t u) γ δ = eval t γ δ ⟪$⟫ eval u γ δ
eval ci γ δ = K ([ci] ⅋ I)
eval ck γ δ = K ([ck] ⅋ ⟪K⟫)
eval cs γ δ = K ([cs] ⅋ ⟪S⟫′)
eval (mvar i) γ δ = mlookup i δ
eval (box t) γ δ = λ ψ → let δ′ = mono²⊩⋆ ψ δ
in [mmulticut] (reifyʳ⋆ δ′) [ box t ] ⅋
eval t ∙ δ′
eval cdist γ δ = K ([cdist] ⅋ _⟪D⟫′_)
eval cup γ δ = K ([cup] ⅋ ⟪↑⟫)
eval cdown γ δ = K ([cdown] ⅋ ⟪↓⟫)
eval cpair γ δ = K ([cpair] ⅋ _⟪,⟫′_)
eval cfst γ δ = K ([cfst] ⅋ π₁)
eval csnd γ δ = K ([csnd] ⅋ π₂)
eval unit γ δ = ∙
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Π P → Π ⊢ α P
; mono²⊩ᵅ = mono²⊢
; _[⊢]_ = _⊢_
; mono²[⊢] = mono²⊢
; [var] = var
; [app] = app
; [ci] = ci
; [ck] = ck
; [cs] = cs
; [mvar] = mvar
; [box] = box
; [cdist] = cdist
; [cup] = cup
; [cdown] = cdown
; [cpair] = cpair
; [cfst] = cfst
; [csnd] = csnd
; [unit] = unit
; [mlam] = mlam
}
mutual
reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t
in t′ ⅋ λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A
reifyᶜ {α P} s = syn s
reifyᶜ {A ▻ B} s = syn (s refl⊆²)
reifyᶜ {□ A} s = syn (s refl⊆²)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ
mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A
quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆)
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = quot ∘ eval