module A201607.BasicIS4.Metatheory.DyadicHilbert-TarskiOvergluedDyadicGentzen where

open import A201607.BasicIS4.Syntax.DyadicHilbert public
open import A201607.BasicIS4.Semantics.TarskiOvergluedDyadicGentzen public


-- Internalisation of syntax as syntax representation in a particular model.

module _ {{_ : Model}} where
  [_] :  {A Γ Δ}  Γ  Δ  A  Γ  Δ [⊢] A
  [ var i ]   = [var] i
  [ app t u ] = [app] [ t ] [ u ]
  [ ci ]      = [ci]
  [ ck ]      = [ck]
  [ cs ]      = [cs]
  [ mvar i ]  = [mvar] i
  [ box t ]   = [box] [ t ]
  [ cdist ]   = [cdist]
  [ cup ]     = [cup]
  [ cdown ]   = [cdown]
  [ cpair ]   = [cpair]
  [ cfst ]    = [cfst]
  [ csnd ]    = [csnd]
  [ unit ]    = [unit]


-- Soundness with respect to all models, or evaluation.

eval :  {Δ A Γ}  Γ  Δ  A  Γ  Δ  A
eval (var i)   γ δ = lookup i γ
eval (app t u) γ δ = eval t γ δ ⟪$⟫ eval u γ δ
eval ci        γ δ = K ([ ci ]  I)
eval ck        γ δ = K ([ ck ]  ⟪K⟫)
eval cs        γ δ = K ([ cs ]  ⟪S⟫′)
eval (mvar i)  γ δ = mlookup i δ
eval (box t)   γ δ = λ ψ  let δ′ = mono²⊩⋆ ψ δ
                            in [mmulticut] (reifyʳ⋆ δ′) [ box t ] 
                                 eval t  δ′
eval cdist     γ δ = K ([ cdist ]  _⟪D⟫′_)
eval cup       γ δ = K ([ cup ]  ⟪↑⟫)
eval cdown     γ δ = K ([ cdown ]  ⟪↓⟫)
eval cpair     γ δ = K ([ cpair ]  _⟪,⟫′_)
eval cfst      γ δ = K ([ cfst ]  π₁)
eval csnd      γ δ = K ([ csnd ]  π₂)
eval unit      γ δ = 


-- TODO: Correctness of evaluation with respect to conversion.


-- The canonical model.

private
  instance
    canon : Model
    canon = record
      { _⊩ᵅ_     = λ Π P  Π  α P
      ; mono²⊩ᵅ  = mono²⊢
      ; _[⊢]_    = _⊢_
      ; mono²[⊢] = mono²⊢
      ; [var]     = var
      ; [lam]     = lam
      ; [app]     = app
      ; [mvar]    = mvar
      ; [box]     = box
      ; [unbox]   = unbox
      ; [pair]    = pair
      ; [fst]     = fst
      ; [snd]     = snd
      ; [unit]    = unit
      }


-- Soundness and completeness with respect to the canonical model.

mutual
  reflectᶜ :  {A Γ Δ}  Γ  Δ  A  Γ  Δ  A
  reflectᶜ {α P}   t = t  t
  reflectᶜ {A  B} t = λ ψ  let t′ = mono²⊢ ψ t
                              in  t′  λ a  reflectᶜ (app t′ (reifyᶜ a))
  reflectᶜ { A}   t = λ ψ  let t′ = mono²⊢ ψ t
                                in  t′  reflectᶜ (down t′)
  reflectᶜ {A  B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
  reflectᶜ {}    t = 

  reifyᶜ :  {A Γ Δ}  Γ  Δ  A  Γ  Δ  A
  reifyᶜ {α P}   s = syn s
  reifyᶜ {A  B} s = syn (s refl⊆²)
  reifyᶜ { A}   s = syn (s refl⊆²)
  reifyᶜ {A  B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
  reifyᶜ {}    s = unit

reflectᶜ⋆ :  {Ξ Γ Δ}  Γ  Δ ⊢⋆ Ξ  Γ  Δ ⊩⋆ Ξ
reflectᶜ⋆ {}             = 
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t

reifyᶜ⋆ :  {Ξ Γ Δ}  Γ  Δ ⊩⋆ Ξ  Γ  Δ ⊢⋆ Ξ
reifyᶜ⋆ {}             = 
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t


-- Reflexivity and transitivity.

refl⊩⋆ :  {Γ Δ}  Γ  Δ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆

mrefl⊩⋆ :  {Γ Δ}  Γ  Δ ⊩⋆ □⋆ Δ
mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆

trans⊩⋆ :  {Γ Γ′ Δ Δ′ Ξ}  Γ  Δ ⊩⋆ Γ′  (□⋆ Δ′)  Γ′  Δ′ ⊩⋆ Ξ  Γ  Δ ⊩⋆ Ξ
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))


-- Completeness with respect to all models, or quotation.

quot :  {A Γ Δ}  Γ  Δ  A  Γ  Δ  A
quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆)


-- Normalisation by evaluation.

norm :  {A Γ Δ}  Γ  Δ  A  Γ  Δ  A
norm = quot  eval


-- TODO: Correctness of normalisation with respect to conversion.