module A201607.BasicIS4.Metatheory.DyadicHilbert-TarskiGluedDyadicHilbert where
open import A201607.BasicIS4.Syntax.DyadicHilbert public
open import A201607.BasicIS4.Semantics.TarskiGluedDyadicHilbert public
module _ {{_ : Model}} where
[_] : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ [⊢] A
[ var i ] = [var] i
[ app t u ] = [app] [ t ] [ u ]
[ ci ] = [ci]
[ ck ] = [ck]
[ cs ] = [cs]
[ mvar i ] = [mvar] i
[ box t ] = [box] [ t ]
[ cdist ] = [cdist]
[ cup ] = [cup]
[ cdown ] = [cdown]
[ cpair ] = [cpair]
[ cfst ] = [cfst]
[ csnd ] = [csnd]
[ unit ] = [unit]
eval : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
eval (var i) γ δ = lookup i γ
eval (app {A} {B} t u) γ δ = _⟪$⟫_ {A} {B} (eval t γ δ) (eval u γ δ)
eval ci γ δ = K I
eval (ck {A} {B}) γ δ = K (⟪K⟫ {A} {B})
eval (cs {A} {B} {C}) γ δ = K (⟪S⟫′ {A} {B} {C})
eval (mvar i) γ δ = mlookup i δ
eval (box t) γ δ = λ η → [ box t ] ⅋
eval t ∙ (mono⊩⋆ η δ)
eval cdist γ δ = K _⟪D⟫′_
eval cup γ δ = K ⟪↑⟫
eval cdown γ δ = K ⟪↓⟫
eval (cpair {A} {B}) γ δ = K (_⟪,⟫′_ {A} {B})
eval cfst γ δ = K π₁
eval csnd γ δ = K π₂
eval unit γ δ = ∙
private
instance
canon : Model
canon = record
{ _⁏_⊩ᵅ_ = λ Γ Δ P → Γ ⁏ Δ ⊢ α P
; mono⊩ᵅ = mono⊢
; _⁏_[⊢]_ = λ Γ Δ A → Γ ⁏ Δ ⊢ A
; mono[⊢] = mono⊢
; [var] = var
; [app] = app
; [ci] = ci
; [ck] = ck
; [cs] = cs
; [mvar] = mvar
; [box] = box
; [cdist] = cdist
; [cup] = cup
; [cdown] = cdown
; [cpair] = cpair
; [cfst] = cfst
; [csnd] = csnd
; [unit] = unit
}
mutual
reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A
reflectᶜ {α P} t = t
reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t
in λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A
reifyᶜ {α P} s = s
reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆ (reflectᶜ {A} v₀)))
reifyᶜ {□ A} s = syn (s refl⊆)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ
mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A
quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆)
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = quot ∘ eval