module A201607.BasicIPC.Metatheory.Hilbert-KripkeMcKinseyTarski where
open import A201607.BasicIPC.Syntax.Hilbert public
open import A201607.BasicIPC.Semantics.KripkeMcKinseyTarski public
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ)
eval ci γ = K I
eval (ck {A} {B}) γ = K (⟪K⟫ {A} {B})
eval (cs {A} {B} {C}) γ = K (⟪S⟫′ {A} {B} {C})
eval (cpair {A} {B}) γ = K (_⟪,⟫′_ {A} {B})
eval cfst γ = K π₁
eval csnd γ = K π₂
eval unit γ = ∙
private
instance
canon : Model
canon = record
{ World = Cx Ty
; _≤_ = _⊆_
; refl≤ = refl⊆
; trans≤ = trans⊆
; _⊩ᵅ_ = λ Γ P → Γ ⊢ α P
; mono⊩ᵅ = mono⊢
}
mutual
reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A
reflectᶜ {α P} t = t
reflectᶜ {A ▻ B} t = λ η a → reflectᶜ (app (mono⊢ η t) (reifyᶜ a))
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reifyᶜ {α P} s = s
reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆ (reflectᶜ {A} v₀)))
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reifyᶜ (s refl⊩⋆)
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval