module A201607.BasicIPC.Metatheory.Hilbert-KripkeConcreteGluedImplicit where

open import A201607.BasicIPC.Syntax.Hilbert public
open import A201607.BasicIPC.Semantics.KripkeConcreteGluedImplicit public

open ImplicitSyntax (_⊢_) (mono⊢) public


-- Completeness with respect to a particular model.

module _ {{_ : Model}} where
  reify :  {A w}  w  A  unwrap w  A
  reify {α P}   s = syn s
  reify {A  B} s = syn s
  reify {A  B} s = pair (reify (π₁ s)) (reify (π₂ s))
  reify {}    s = unit

  reify⋆ :  {Ξ w}  w ⊩⋆ Ξ  unwrap w ⊢⋆ Ξ
  reify⋆ {}             = 
  reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t


-- Additional useful equipment.

module _ {{_ : Model}} where
  ⟪K⟫ :  {A B w}  w  A  w  B  A
  ⟪K⟫ {A} a = app ck (reify a)  λ ξ 
                K (mono⊩ {A} ξ a)

  ⟪S⟫′ :  {A B C w}  w  A  B  C  w  (A  B)  A  C
  ⟪S⟫′ {A} {B} {C} s₁ = app cs (syn s₁)  λ ξ s₂ 
                          app (app cs (mono⊢ (unwrap≤ ξ) (syn s₁))) (syn s₂)  λ ξ′ 
                            ⟪S⟫ (mono⊩ {A  B  C} (trans≤ ξ ξ′) s₁) (mono⊩ {A  B} ξ′ s₂)

  _⟪,⟫′_ :  {A B w}  w  A  w  B  A  B
  _⟪,⟫′_ {A} a = app cpair (reify a)  λ ξ 
                   _,_ (mono⊩ {A} ξ a)


-- Soundness with respect to all models, or evaluation.

eval :  {A Γ}  Γ  A  Γ  A
eval (var i)   γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci        γ = ci  K I
eval ck        γ = ck  K ⟪K⟫
eval cs        γ = cs  K ⟪S⟫′
eval cpair     γ = cpair  K _⟪,⟫′_
eval cfst      γ = cfst  K π₁
eval csnd      γ = csnd  K π₂
eval unit      γ = 


-- TODO: Correctness of evaluation with respect to conversion.


-- The canonical model.

private
  instance
    canon : Model
    canon = record
      { _⊩ᵅ_   = λ w P  unwrap w  α P
      ; mono⊩ᵅ = λ ξ t  mono⊢ (unwrap≤ ξ) t
      }


-- Soundness with respect to the canonical model.

reflectᶜ :  {A w}  unwrap w  A  w  A
reflectᶜ {α P}   t = t  t
reflectᶜ {A  B} t = t  λ ξ a  reflectᶜ (app (mono⊢ (unwrap≤ ξ) t) (reify a))
reflectᶜ {A  B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {}    t = 

reflectᶜ⋆ :  {Ξ w}  unwrap w ⊢⋆ Ξ  w ⊩⋆ Ξ
reflectᶜ⋆ {}             = 
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t


-- Reflexivity and transitivity.

refl⊩⋆ :  {w}  w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆

trans⊩⋆ :  {w w′ w″}  w ⊩⋆ unwrap w′  w′ ⊩⋆ unwrap w″  w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))


-- Completeness with respect to all models, or quotation.

quot :  {A Γ}  Γ  A  Γ  A
quot s = reify (s refl⊩⋆)


-- Normalisation by evaluation.

norm :  {A Γ}  Γ  A  Γ  A
norm = quot  eval


-- TODO: Correctness of normalisation with respect to conversion.