module A201607.BasicIPC.Metatheory.Hilbert-KripkeConcrete where

open import A201607.BasicIPC.Syntax.Hilbert public
open import A201607.BasicIPC.Semantics.KripkeConcrete public


-- Soundness with respect to all models, or evaluation.

eval :  {A Γ}  Γ  A  Γ  A
eval (var i)           γ = lookup i γ
eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ)
eval ci                γ = K I
eval (ck {A} {B})      γ = K (⟪K⟫ {A} {B})
eval (cs {A} {B} {C})  γ = K (⟪S⟫′ {A} {B} {C})
eval (cpair {A} {B})   γ = K (_⟪,⟫′_ {A} {B})
eval cfst              γ = K π₁
eval csnd              γ = K π₂
eval unit              γ = 


-- TODO: Correctness of evaluation with respect to conversion.


-- The canonical model.

private
  instance
    canon : Model
    canon = record
      { _⊩ᵅ_   = λ w P  unwrap w  α P
      ; mono⊩ᵅ = λ ξ t  mono⊢ (unwrap≤ ξ) t
      }


-- Soundness and completeness with respect to the canonical model.

mutual
  reflectᶜ :  {A w}  unwrap w  A  w  A
  reflectᶜ {α P}   t = t
  reflectᶜ {A  B} t = λ ξ a  reflectᶜ (app (mono⊢ (unwrap≤ ξ) t) (reifyᶜ a))
  reflectᶜ {A  B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
  reflectᶜ {}    t = 

  reifyᶜ :  {A w}  w  A  unwrap w  A
  reifyᶜ {α P}   s = s
  reifyᶜ {A  B} s = lam (reifyᶜ (s weak≤ (reflectᶜ {A} v₀)))
  reifyᶜ {A  B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
  reifyᶜ {}    s = unit

reflectᶜ⋆ :  {Ξ w}  unwrap w ⊢⋆ Ξ  w ⊩⋆ Ξ
reflectᶜ⋆ {}             = 
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t

reifyᶜ⋆ :  {Ξ w}  w ⊩⋆ Ξ  unwrap w ⊢⋆ Ξ
reifyᶜ⋆ {}             = 
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t


-- Reflexivity and transitivity.

refl⊩⋆ :  {w}  w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆

trans⊩⋆ :  {w w′ w″}  w ⊩⋆ unwrap w′  w′ ⊩⋆ unwrap w″  w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))


-- Completeness with respect to all models, or quotation.

quot :  {A Γ}  Γ  A  Γ  A
quot s = reifyᶜ (s refl⊩⋆)


-- Normalisation by evaluation.

norm :  {A Γ}  Γ  A  Γ  A
norm = quot  eval


-- TODO: Correctness of normalisation with respect to conversion.