module A201607.BasicIPC.Metatheory.Gentzen-TarskiConcreteGluedHilbert where

open import A201607.BasicIPC.Syntax.Gentzen public
open import A201607.BasicIPC.Semantics.TarskiConcreteGluedHilbert public


-- Internalisation of syntax as syntax representation in a particular model.

module _ {{_ : Model}} where
  [_] :  {A Γ}  Γ  A  Γ [⊢] A
  [ var i ]    = [var] i
  [ lam t ]    = [lam] [ t ]
  [ app t u ]  = [app] [ t ] [ u ]
  [ pair t u ] = [pair] [ t ] [ u ]
  [ fst t ]    = [fst] [ t ]
  [ snd t ]    = [snd] [ t ]
  [ unit ]     = [unit]


-- Soundness with respect to all models, or evaluation.

eval :  {A Γ}  Γ  A  Γ  A
eval (var i)    γ = lookup i γ
eval (lam t)    γ = [multicut] (reifyʳ⋆ γ) [ lam t ]  λ a 
                      eval t (γ , a)
eval (app t u)  γ = eval t γ ⟪$⟫ eval u γ
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t)    γ = π₁ (eval t γ)
eval (snd t)    γ = π₂ (eval t γ)
eval unit       γ = 


-- TODO: Correctness of evaluation with respect to conversion.


-- The canonical model.

private
  instance
    canon : Model
    canon = record
      { _⊩ᵅ_    = λ w P  unwrap w  α P
      ; _[⊢]_   = _⊢_
      ; mono[⊢] = mono⊢
      ; [var]    = var
      ; [app]    = app
      ; [ci]     = ci
      ; [ck]     = ck
      ; [cs]     = cs
      ; [cpair]  = cpair
      ; [cfst]   = cfst
      ; [csnd]   = csnd
      ; [unit]   = unit
      ; [lam]    = lam
      }


-- Soundness and completeness with respect to the canonical model.

mutual
  reflectᶜ :  {A w}  unwrap w  A  w  A
  reflectᶜ {α P}   t = t  t
  reflectᶜ {A  B} t = t  λ a  reflectᶜ (app t (reifyᶜ a))
  reflectᶜ {A  B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
  reflectᶜ {}    t = 

  reifyᶜ :  {A w}  w  A  unwrap w  A
  reifyᶜ {α P}   s = syn s
  reifyᶜ {A  B} s = syn s
  reifyᶜ {A  B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
  reifyᶜ {}    s = unit

reflectᶜ⋆ :  {Ξ w}  unwrap w ⊢⋆ Ξ  w ⊩⋆ Ξ
reflectᶜ⋆ {}             = 
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t

reifyᶜ⋆ :  {Ξ w}  w ⊩⋆ Ξ  unwrap w ⊢⋆ Ξ
reifyᶜ⋆ {}             = 
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t


-- Reflexivity and transitivity.

refl⊩⋆ :  {w}  w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆

trans⊩⋆ :  {w w′ w″}  w ⊩⋆ unwrap w′  w′ ⊩⋆ unwrap w″  w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))


-- Completeness with respect to all models, or quotation.

quot :  {A Γ}  Γ  A  Γ  A
quot s = reifyᶜ (s refl⊩⋆)


-- Normalisation by evaluation.

norm :  {A Γ}  Γ  A  Γ  A
norm = quot  eval


-- TODO: Correctness of normalisation with respect to conversion.