module A201607.BasicIPC.Metatheory.Gentzen-BasicTarski where
open import A201607.BasicIPC.Syntax.Gentzen public
open import A201607.BasicIPC.Semantics.BasicTarski public
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (lam t) γ = λ a → eval t (γ , a)
eval (app t u) γ = eval t γ $ eval u γ
eval (pair t u) γ = eval t γ , eval u γ
eval (fst t) γ = π₁ (eval t γ)
eval (snd t) γ = π₂ (eval t γ)
eval unit γ = ∙
postulate
oops₁ : ∀ {{_ : Model}} {A B Γ} {t : Γ , A ⊢ B} {u : Γ ⊢ A}
→ eval ([ top ≔ u ] t) ≡ (λ γ → eval t (γ , eval u γ))
oops₂ : ∀ {{_ : Model}} {A B Γ} {t : Γ ⊢ A ▻ B}
→ eval t ≡ (λ γ a → eval (mono⊢ (weak⊆ {A = A}) t) (γ , a) a)
eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′
eval✓ refl⋙ = refl
eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q)
eval✓ (sym⋙ p) = sym (eval✓ p)
eval✓ (conglam⋙ {A} {B} p) = cong (⟦λ⟧ {A} {B}) (eval✓ p)
eval✓ (congapp⋙ {A} {B} p q) = cong² (_⟦$⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q)
eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p)
eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p)
eval✓ (beta▻⋙ {A} {B} {t} {u}) = sym (oops₁ {A} {B} {_} {t} {u})
eval✓ (eta▻⋙ {A} {B} {t}) = oops₂ {A} {B} {_} {t}
eval✓ beta∧₁⋙ = refl
eval✓ beta∧₂⋙ = refl
eval✓ eta∧⋙ = refl
eval✓ eta⊤⋙ = refl