module A201607.BasicILP.Syntax.DyadicGentzen where
open import A201607.BasicILP.Syntax.Common public
mutual
syntax □ Π A t = [ Π ⊢ t ] A
infixr 10 □
infixl 9 _∧_
infixr 7 _▻_
data Ty : Set where
α_ : Atom → Ty
_▻_ : Ty → Ty → Ty
□ : (Π : Cx² Ty Box) → (A : Ty) → Π ⊢ A → Ty
_∧_ : Ty → Ty → Ty
⊤ : Ty
record Box : Set where
inductive
constructor □
field
Π : Cx² Ty Box
A : Ty
x : Π ⊢ A
infix 3 _⊢_
data _⊢_ : Cx² Ty Box → Ty → Set where
var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A
lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ▻ B
app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B
mvar : ∀ {Ψ Ω A x Γ Δ} → [ Ψ ⁏ Ω ⊢ x ] A ∈ Δ
→ Γ ⁏ Δ ⊢⋆ Ψ
→ Γ ⁏ Δ ⊢⍟ Ω
→ Γ ⁏ Δ ⊢ A
box : ∀ {Ψ Ω A Γ Δ} → (x : Ψ ⁏ Ω ⊢ A)
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A
unbox : ∀ {Ψ Ω A C x Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ C
→ Γ ⁏ Δ ⊢ C
pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ∧ B
fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ A
snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ B
unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⊤
infix 3 _⊢⋆_
data _⊢⋆_ : Cx² Ty Box → Cx Ty → Set where
∙ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ ∅
_,_ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ , A
infix 3 _⊢⍟_
data _⊢⍟_ : Cx² Ty Box → Cx Box → Set where
∙ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⍟ ∅
_,_ : ∀ {Ξ Ψ Ω A x Γ Δ} → Γ ⁏ Δ ⊢⍟ Ξ
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A
→ Γ ⁏ Δ ⊢⍟ Ξ , [ Ψ ⁏ Ω ⊢ x ] A
mutual
mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (mvar i ts us) = mvar i (mono⊢⋆ η ts) (mono⊢⍟ η us)
mono⊢ η (box t) = box t
mono⊢ η (unbox t u) = unbox (mono⊢ η t) (mono⊢ η u)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ ⊢⋆ Ξ
mono⊢⋆ η ∙ = ∙
mono⊢⋆ η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
mono⊢⍟ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⍟ Ξ → Γ′ ⁏ Δ ⊢⍟ Ξ
mono⊢⍟ η ∙ = ∙
mono⊢⍟ η (ts , t) = mono⊢⍟ η ts , mono⊢ η t
mutual
mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A
mmono⊢ θ (var i) = var i
mmono⊢ θ (lam t) = lam (mmono⊢ θ t)
mmono⊢ θ (app t u) = app (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ (mvar i ts us) = mvar (mono∈ θ i) (mmono⊢⋆ θ ts) (mmono⊢⍟ θ us)
mmono⊢ θ (box t) = box t
mmono⊢ θ (unbox t u) = unbox (mmono⊢ θ t) (mmono⊢ (keep θ) u)
mmono⊢ θ (pair t u) = pair (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ (fst t) = fst (mmono⊢ θ t)
mmono⊢ θ (snd t) = snd (mmono⊢ θ t)
mmono⊢ θ unit = unit
mmono⊢⋆ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ′ ⊢⋆ Ξ
mmono⊢⋆ θ ∙ = ∙
mmono⊢⋆ θ (ts , t) = mmono⊢⋆ θ ts , mmono⊢ θ t
mmono⊢⍟ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⍟ Ξ → Γ ⁏ Δ′ ⊢⍟ Ξ
mmono⊢⍟ θ ∙ = ∙
mmono⊢⍟ θ (ts , t) = mmono⊢⍟ θ ts , mmono⊢ θ t
mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A
mono²⊢ (η , θ) = mono⊢ η ∘ mmono⊢ θ
v₀ : ∀ {A Γ Δ} → Γ , A ⁏ Δ ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ ⊢ A
v₂ = var i₂
mv₀ : ∀ {Ψ Ω A x Γ Δ}
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⋆ Ψ
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⍟ Ω
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ A
mv₀ = mvar i₀
mv₁ : ∀ {Ψ Ψ′ Ω Ω′ A B x y Γ Δ}
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢⋆ Ψ
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢⍟ Ω
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢ A
mv₁ = mvar i₁
mv₂ : ∀ {Ψ Ψ′ Ψ″ Ω Ω′ Ω″ A B C x y z Γ Δ}
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ″ ⁏ Ω″ ⊢ z ] C ⊢⋆ Ψ
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ″ ⁏ Ω″ ⊢ z ] C ⊢⍟ Ω
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ″ ⁏ Ω″ ⊢ z ] C ⊢ A
mv₂ = mvar i₂
grefl⊢⋆ : ∀ {Γ Ψ Δ} → Ψ ⊆ Γ → Γ ⁏ Δ ⊢⋆ Ψ
grefl⊢⋆ {∅} done = ∙
grefl⊢⋆ {Γ , A} (skip η) = mono⊢⋆ weak⊆ (grefl⊢⋆ η)
grefl⊢⋆ {Γ , A} (keep η) = mono⊢⋆ weak⊆ (grefl⊢⋆ η) , v₀
gmrefl⊢⍟ : ∀ {Δ Ω Γ} → Ω ⊆ Δ → Γ ⁏ Δ ⊢⍟ Ω
gmrefl⊢⍟ {∅} done = ∙
gmrefl⊢⍟ {Δ , [ Ψ ⁏ Ω ⊢ x ] A } (skip θ) = mmono⊢⍟ weak⊆ (gmrefl⊢⍟ θ)
gmrefl⊢⍟ {Δ , [ Ψ ⁏ Ω ⊢ x ] A } (keep θ) = mmono⊢⍟ weak⊆ (gmrefl⊢⍟ θ) , box x
refl⊢⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ Γ
refl⊢⋆ = grefl⊢⋆ refl⊆
mrefl⊢⍟ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⍟ Δ
mrefl⊢⍟ = gmrefl⊢⍟ refl⊆
mlam : ∀ {Ψ Ω A B x Γ Δ}
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A ▻ B
mlam t = lam (unbox v₀ (mono⊢ weak⊆ t))
det : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ , A ⁏ Δ ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
mdet : ∀ {Ψ Ω A B x Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A ▻ B
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B
mdet {x = x} t = app (mmono⊢ weak⊆ t) (box x)
cut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ B
cut t u = app (lam u) t
mcut : ∀ {Ψ Ω A B x Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B
→ Γ ⁏ Δ ⊢ B
mcut t u = app (mlam u) t
multicut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
multicut ∙ u = mono⊢ bot⊆ u
multicut (ts , t) u = app (multicut ts (lam u)) t
ccont : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ Δ} → Γ , A , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ B
cont t = det (app ccont (lam (lam t)))
mcont : ∀ {Ψ Ω A B x Γ Δ}
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ B
mcont t = mdet (app ccont (mlam (mlam t)))
cexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ Δ} → Γ , A , B ⁏ Δ ⊢ C → Γ , B , A ⁏ Δ ⊢ C
exch t = det (det (app cexch (lam (lam t))))
mexch : ∀ {Ψ Ψ′ Ω Ω′ A B C x y Γ Δ}
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢ C
→ Γ ⁏ Δ , [ Ψ′ ⁏ Ω′ ⊢ y ] B , [ Ψ ⁏ Ω ⊢ x ] A ⊢ C
mexch t = mdet (mdet (app cexch (mlam (mlam t))))
ccomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ Δ} → Γ , B ⁏ Δ ⊢ C → Γ , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
mcomp : ∀ {Ψ Ψ′ Ψ″ Ω Ω′ Ω″ A B C x y z Γ Δ}
→ Γ ⁏ Δ , [ Ψ′ ⁏ Ω′ ⊢ y ] B ⊢ [ Ψ″ ⁏ Ω″ ⊢ z ] C
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ [ Ψ′ ⁏ Ω′ ⊢ y ] B
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢ [ Ψ″ ⁏ Ω″ ⊢ z ] C
mcomp t u = mdet (app (app ccomp (mlam t)) (mlam u))
dist : ∀ {Ψ Ω A B x y Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] (A ▻ B)
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ y ] A
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ x ] (A ▻ B) , [ Ψ ⁏ Ω ⊢ y ] A ⊢ app (mv₁ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) ] B
dist t u = unbox t (unbox (mmono⊢ weak⊆ u) (box
(app (mv₁ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)))))
up : ∀ {Ψ Ω A x Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ box (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆)) ] [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ x ] A ⊢ mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆) ] A
up t = unbox t (box (box (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆))))
down : ∀ {Ψ Ω A x Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ x ] A
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⋆ Ψ
→ Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ x ] A ⊢⍟ Ω
→ Γ ⁏ Δ ⊢ A
down t us vs = unbox t (mv₀ us vs)
ci : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cdist : ∀ {Ψ Ω A B t u Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ t ] (A ▻ B) ▻
[ Ψ ⁏ Ω ⊢ u ] A ▻
[ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ t ] (A ▻ B) , [ Ψ ⁏ Ω ⊢ u ] A ⊢ app (mv₁ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) ] B
cdist = lam (lam (dist v₁ v₀))
cup : ∀ {Ψ Ω A t Γ Δ}
→ Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ t ] A ▻
[ Ψ ⁏ Ω ⊢ box (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆)) ] [ Ψ ⁏ Ω , [ Ψ ⁏ Ω ⊢ t ] A ⊢ mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆) ] A
cup = lam (up v₀)
cunbox : ∀ {Ψ Ω A C t Γ Δ} → Γ ⁏ Δ ⊢ [ Ψ ⁏ Ω ⊢ t ] A ▻ ([ Ψ ⁏ Ω ⊢ t ] A ▻ C) ▻ C
cunbox = lam (lam (app v₀ v₁))
cpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
concat : ∀ {A B Γ} Γ′ {Δ} → Γ , A ⁏ Δ ⊢ B → Γ′ ⁏ Δ ⊢ A → Γ ⧺ Γ′ ⁏ Δ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
mconcat : ∀ {Ψ Ω A B t Γ Δ} Δ′ → Γ ⁏ Δ , [ Ψ ⁏ Ω ⊢ t ] A ⊢ B → Γ ⁏ Δ′ ⊢ [ Ψ ⁏ Ω ⊢ t ] A → Γ ⁏ Δ ⧺ Δ′ ⊢ B
mconcat Δ′ t u = app (mmono⊢ (weak⊆⧺₁ Δ′) (mlam t)) (mmono⊢ weak⊆⧺₂ u)
mutual
[_≔_]_ : ∀ {A C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ C → Γ ∖ i ⁏ Δ ⊢ C
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] mvar j ts us = mvar j ([ i ≔ s ]⋆ ts) ([ i ≔ s ]⍟ us)
[ i ≔ s ] box t = box t
[ i ≔ s ] unbox t u = unbox ([ i ≔ s ] t) ([ i ≔ mmono⊢ weak⊆ s ] u)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ∖ i ⁏ Δ ⊢⋆ Ξ
[_≔_]⋆_ i s ∙ = ∙
[_≔_]⋆_ i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
[_≔_]⍟_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⍟ Ξ → Γ ∖ i ⁏ Δ ⊢⍟ Ξ
[_≔_]⍟_ i s ∙ = ∙
[_≔_]⍟_ i s (ts , t) = [ i ≔ s ]⍟ ts , [ i ≔ s ] t
mutual
m[_≔_]_ : ∀ {Ψ Ω A C t Γ Δ} → (i : [ Ψ ⁏ Ω ⊢ t ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢ C → Γ ⁏ Δ ∖ i ⊢ C
m[ i ≔ s ] var j = var j
m[ i ≔ s ] lam t = lam (m[ i ≔ s ] t)
m[ i ≔ s ] app t u = app (m[ i ≔ s ] t) (m[ i ≔ s ] u)
m[ i ≔ s ] mvar j ts us with i ≟∈ j
m[ i ≔ s ] mvar .i ts us | same = multicut (m[ i ≔ s ]⋆ ts) s
m[ i ≔ s ] mvar ._ ts us | diff j = mvar j (m[ i ≔ s ]⋆ ts) (m[ i ≔ s ]⍟ us)
m[ i ≔ s ] box t = box t
m[ i ≔ s ] unbox t u = unbox (m[ i ≔ s ] t) (m[ pop i ≔ mmono⊢ weak⊆ s ] u)
m[ i ≔ s ] pair t u = pair (m[ i ≔ s ] t) (m[ i ≔ s ] u)
m[ i ≔ s ] fst t = fst (m[ i ≔ s ] t)
m[ i ≔ s ] snd t = snd (m[ i ≔ s ] t)
m[ i ≔ s ] unit = unit
m[_≔_]⋆_ : ∀ {Ξ Ψ Ω A t Γ Δ} → (i : [ Ψ ⁏ Ω ⊢ t ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ∖ i ⊢⋆ Ξ
m[_≔_]⋆_ i s ∙ = ∙
m[_≔_]⋆_ i s (ts , t) = m[ i ≔ s ]⋆ ts , m[ i ≔ s ] t
m[_≔_]⍟_ : ∀ {Ξ Ψ Ω A t Γ Δ} → (i : [ Ψ ⁏ Ω ⊢ t ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⍟ Ξ → Γ ⁏ Δ ∖ i ⊢⍟ Ξ
m[_≔_]⍟_ i s ∙ = ∙
m[_≔_]⍟_ i s (ts , t) = m[ i ≔ s ]⍟ ts , m[ i ≔ s ] t
module Examples₁ where
e₁ : ∀ {A C D Γ Δ t}
→ Γ ⁏ Δ ⊢ [ ∅ , C ⁏ Δ ⊢ t ] A ▻
[ ∅ , C , D ⁏ Δ , [ ∅ , C ⁏ Δ ⊢ t ] A ⊢ mv₀ (∙ , var (pop top)) (gmrefl⊢⍟ weak⊆) ] A
e₁ = lam (unbox v₀ (box (mv₀ (∙ , var (pop top)) (gmrefl⊢⍟ weak⊆))))
e₂ : ∀ {A C Γ Δ t}
→ Γ ⁏ Δ ⊢ [ ∅ , C , C ⁏ Δ ⊢ t ] A ▻
[ ∅ , C ⁏ Δ , [ ∅ , C , C ⁏ Δ ⊢ t ] A ⊢ mv₀ (refl⊢⋆ , var top) (gmrefl⊢⍟ weak⊆) ] A
e₂ = lam (unbox v₀ (box (mv₀ (refl⊢⋆ , var top) (gmrefl⊢⍟ weak⊆))))
e₃ : ∀ {A Γ Δ}
→ Γ ⁏ Δ ⊢ [ ∅ , A ⁏ Δ ⊢ v₀ ] A
e₃ = box v₀
e₄ : ∀ {A B C Γ Δ t u v}
→ Γ ⁏ Δ ⊢ [ ∅ , A ⁏ Δ ⊢ t ] B ▻
[ ∅ , A ⁏ Δ ⊢ v ] [ ∅ , B ⁏ Δ ⊢ u ] C ▻
[ ∅ , A ⁏ Δ , [ ∅ , A ⁏ Δ ⊢ t ] B
, [ ∅ , A ⁏ Δ ⊢ v ] [ ∅ , B ⁏ Δ ⊢ u ] C
⊢ unbox (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) (mv₀ (∙ , mv₂ refl⊢⋆ (gmrefl⊢⍟ (skip weak²⊆))) (gmrefl⊢⍟ (skip weak²⊆))) ] C
e₄ = lam (lam (unbox v₁ (unbox v₀ (box
(unbox (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) (mv₀ (∙ , mv₂ refl⊢⋆ (gmrefl⊢⍟ (skip weak²⊆))) (gmrefl⊢⍟ (skip weak²⊆))))))))
e₅ : ∀ {A Γ Δ t}
→ Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ t ] A ▻ A
e₅ = lam (unbox v₀ (mv₀ ∙ (gmrefl⊢⍟ weak⊆)))
e₆ : ∀ {A C D Γ Δ t}
→ Γ ⁏ Δ ⊢ [ ∅ , C ⁏ Δ ⊢ t ] A ▻
[ ∅ , D ⁏ Δ ⊢ box (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆)) ]
[ ∅ , C ⁏ Δ , [ ∅ , C ⁏ Δ ⊢ t ]
A ⊢ mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆) ] A
e₆ = lam (unbox v₀ (box (box (mv₀ refl⊢⋆ (gmrefl⊢⍟ weak⊆)))))
e₇ : ∀ {A B C D Γ Δ t u}
→ Γ ⁏ Δ ⊢ [ ∅ , C ⁏ Δ ⊢ t ] (A ▻ B) ▻
[ ∅ , D ⁏ Δ ⊢ u ] A ▻
[ ∅ , C , D ⁏ Δ , [ ∅ , C ⁏ Δ ⊢ t ] (A ▻ B)
, [ ∅ , D ⁏ Δ ⊢ u ] A
⊢ app (mv₁ (∙ , var (pop top)) (gmrefl⊢⍟ weak²⊆)) (mv₀ (∙ , var top) (gmrefl⊢⍟ weak²⊆)) ] B
e₇ = lam (lam (unbox v₁ (unbox v₀ (box
(app (mv₁ (∙ , var (pop top)) (gmrefl⊢⍟ weak²⊆)) (mv₀ (∙ , var top) (gmrefl⊢⍟ weak²⊆)))))))
e₈ : ∀ {A B C Γ Δ t u}
→ Γ ⁏ Δ ⊢ [ ∅ , A ⁏ Δ ⊢ t ] (A ▻ B) ▻
[ ∅ , B ⁏ Δ ⊢ u ] C ▻
[ ∅ , A ⁏ Δ , [ ∅ , A ⁏ Δ ⊢ t ] (A ▻ B)
, [ ∅ , B ⁏ Δ ⊢ u ] C
⊢ mv₀ (∙ , app (mv₁ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) v₀) (gmrefl⊢⍟ weak²⊆) ] C
e₈ = lam (lam (unbox v₁ (unbox v₀ (box
(mv₀ (∙ , app (mv₁ refl⊢⋆ (gmrefl⊢⍟ weak²⊆)) v₀) (gmrefl⊢⍟ weak²⊆))))))
module Examples₂ where
e₁ : ∀ {A Γ Δ t}
→ Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ lam (down v₀ ∙ (gmrefl⊢⍟ weak⊆)) ]
([ ∅ ⁏ Δ ⊢ t ] A ▻ A)
e₁ = box (lam (down v₀ ∙ (gmrefl⊢⍟ weak⊆)))
e₂ : ∀ {A Γ Δ t}
→ Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ lam (up v₀) ]
([ ∅ ⁏ Δ ⊢ t ] A ▻
[ ∅ ⁏ Δ ⊢ box (mv₀ ∙ (gmrefl⊢⍟ weak⊆)) ]
[ ∅ ⁏ Δ , [ ∅ ⁏ Δ ⊢ t ]
A ⊢ mv₀ ∙ (gmrefl⊢⍟ weak⊆) ] A)
e₂ = box (lam (up v₀))
e₃ : ∀ {A B Γ Δ}
→ Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ box (lam (lam (pair v₁ v₀))) ]
[ ∅ ⁏ Δ ⊢ lam (lam (pair v₁ v₀)) ]
(A ▻ B ▻ A ∧ B)
e₃ = box (box (lam (lam (pair v₁ v₀))))
e₄ : ∀ {A B Γ Δ t u}
→ Γ ⁏ Δ ⊢ [ ∅ ⁏ Δ ⊢ lam (lam (unbox v₁ (unbox v₀ (box
(box (pair (mv₁ ∙ (gmrefl⊢⍟ weak²⊆)) (mv₀ ∙ (gmrefl⊢⍟ weak²⊆)))))))) ]
([ ∅ ⁏ Δ ⊢ t ] A ▻
[ ∅ ⁏ Δ ⊢ u ] B ▻
[ ∅ ⁏ Δ ⊢ box (pair (mv₁ ∙ (gmrefl⊢⍟ weak²⊆)) (mv₀ ∙ (gmrefl⊢⍟ weak²⊆))) ]
[ ∅ ⁏ Δ , [ ∅ ⁏ Δ ⊢ t ] A
, [ ∅ ⁏ Δ ⊢ u ] B
⊢ pair (mv₁ ∙ (gmrefl⊢⍟ weak²⊆)) (mv₀ ∙ (gmrefl⊢⍟ weak²⊆)) ]
(A ∧ B))
e₄ = box (lam (lam (unbox v₁ (unbox v₀ (box
(box (pair (mv₁ ∙ (gmrefl⊢⍟ weak²⊆)) (mv₀ ∙ (gmrefl⊢⍟ weak²⊆)))))))))