module A201607.BasicICML.Metatheory.DyadicGentzenSpinalNormalForm-HereditarySubstitution where
open import A201607.BasicICML.Syntax.DyadicGentzenSpinalNormalForm public
mutual
[_≔_]ⁿᶠ_ : ∀ {A B Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ∖ i ⁏ Δ ⊢ⁿᶠ B
[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ j xs y) with i ≟∈ j
[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ .i xs y) | same = reduce s ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ᵗᵖ y)
[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ ._ xs y) | diff j = neⁿᶠ (spⁿᵉ j ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ᵗᵖ y))
[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ j ts xs y) = neⁿᶠ (mspⁿᵉ j ([ i ≔ s ]⋆ⁿᶠ ts) ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ᵗᵖ y))
[ i ≔ s ]ⁿᶠ lamⁿᶠ t = lamⁿᶠ ([ pop i ≔ mono⊢ⁿᶠ weak⊆ s ]ⁿᶠ t)
[ i ≔ s ]ⁿᶠ boxⁿᶠ t = boxⁿᶠ t
[ i ≔ s ]ⁿᶠ pairⁿᶠ t u = pairⁿᶠ ([ i ≔ s ]ⁿᶠ t) ([ i ≔ s ]ⁿᶠ u)
[ i ≔ s ]ⁿᶠ unitⁿᶠ = unitⁿᶠ
[_≔_]ˢᵖ_ : ∀ {A B C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ B ⦙ C → Γ ∖ i ⁏ Δ ⊢ˢᵖ B ⦙ C
[ i ≔ s ]ˢᵖ nilˢᵖ = nilˢᵖ
[ i ≔ s ]ˢᵖ appˢᵖ xs u = appˢᵖ ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ⁿᶠ u)
[ i ≔ s ]ˢᵖ fstˢᵖ xs = fstˢᵖ ([ i ≔ s ]ˢᵖ xs)
[ i ≔ s ]ˢᵖ sndˢᵖ xs = sndˢᵖ ([ i ≔ s ]ˢᵖ xs)
[_≔_]ᵗᵖ_ : ∀ {A B C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ∖ i ⁏ Δ ⊢ᵗᵖ B ⦙ C
[ i ≔ s ]ᵗᵖ nilᵗᵖ = nilᵗᵖ
[ i ≔ s ]ᵗᵖ unboxᵗᵖ u = unboxᵗᵖ u′
where u′ = [ i ≔ mmono⊢ⁿᶠ weak⊆ s ]ⁿᶠ u
[_≔_]⋆ⁿᶠ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ ∖ i ⁏ Δ ⊢⋆ⁿᶠ Ξ
[_≔_]⋆ⁿᶠ {∅} i s ∙ = ∙
[_≔_]⋆ⁿᶠ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ⁿᶠ ts , [ i ≔ s ]ⁿᶠ t
m[_≔_]ⁿᶠ_ : ∀ {Ψ A B Γ Δ} → (i : [ Ψ ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ∖ i ⊢ⁿᶠ B
m[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ j xs y) = neⁿᶠ (spⁿᵉ j (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ᵗᵖ y))
m[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ j ts xs y) with i ≟∈ j
m[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ .i ts xs y) | same = reduce (multicutⁿᶠ (m[ i ≔ s ]⋆ⁿᶠ ts) s) (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ᵗᵖ y)
m[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ ._ ts xs y) | diff j = neⁿᶠ (mspⁿᵉ j (m[ i ≔ s ]⋆ⁿᶠ ts) (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ᵗᵖ y))
m[ i ≔ s ]ⁿᶠ lamⁿᶠ t = lamⁿᶠ (m[ i ≔ s ]ⁿᶠ t)
m[ i ≔ s ]ⁿᶠ boxⁿᶠ t = boxⁿᶠ (m[ i ≔ s ]ⁿᶠ t)
m[ i ≔ s ]ⁿᶠ pairⁿᶠ t u = pairⁿᶠ (m[ i ≔ s ]ⁿᶠ t) (m[ i ≔ s ]ⁿᶠ u)
m[ i ≔ s ]ⁿᶠ unitⁿᶠ = unitⁿᶠ
m[_≔_]ˢᵖ_ : ∀ {Ψ A B C Γ Δ} → (i : [ Ψ ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ B ⦙ C → Γ ⁏ Δ ∖ i ⊢ˢᵖ B ⦙ C
m[ i ≔ s ]ˢᵖ nilˢᵖ = nilˢᵖ
m[ i ≔ s ]ˢᵖ appˢᵖ xs u = appˢᵖ (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ⁿᶠ u)
m[ i ≔ s ]ˢᵖ fstˢᵖ xs = fstˢᵖ (m[ i ≔ s ]ˢᵖ xs)
m[ i ≔ s ]ˢᵖ sndˢᵖ xs = sndˢᵖ (m[ i ≔ s ]ˢᵖ xs)
m[_≔_]ᵗᵖ_ : ∀ {Ψ A B C Γ Δ} → (i : [ Ψ ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ⁏ Δ ∖ i ⊢ᵗᵖ B ⦙ C
m[ i ≔ s ]ᵗᵖ nilᵗᵖ = nilᵗᵖ
m[ i ≔ s ]ᵗᵖ unboxᵗᵖ u = unboxᵗᵖ u′
where u′ = m[ pop i ≔ mmono⊢ⁿᶠ weak⊆ s ]ⁿᶠ u
m[_≔_]⋆ⁿᶠ : ∀ {Ξ Ψ A Γ Δ} → (i : [ Ψ ] A ∈ Δ) → Ψ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ ⁏ Δ ∖ i ⊢⋆ⁿᶠ Ξ
m[_≔_]⋆ⁿᶠ {∅} i s ∙ = ∙
m[_≔_]⋆ⁿᶠ {Ξ , B} i s (ts , t) = m[ i ≔ s ]⋆ⁿᶠ ts , m[ i ≔ s ]ⁿᶠ t
reduce : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ A ⦙ B → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → {{_ : Tyⁿᵉ C}} → Γ ⁏ Δ ⊢ⁿᶠ C
reduce t nilˢᵖ nilᵗᵖ = t
reduce (neⁿᶠ (spⁿᵉ i xs nilᵗᵖ)) nilˢᵖ y = neⁿᶠ (spⁿᵉ i xs y)
reduce (neⁿᶠ (spⁿᵉ i xs (unboxᵗᵖ u))) nilˢᵖ y = neⁿᶠ (spⁿᵉ i xs (unboxᵗᵖ u′))
where u′ = reduce u nilˢᵖ (mmono⊢ᵗᵖ weak⊆ y)
reduce (neⁿᶠ (mspⁿᵉ i ts xs nilᵗᵖ)) nilˢᵖ y = neⁿᶠ (mspⁿᵉ i ts xs y)
reduce (neⁿᶠ (mspⁿᵉ i ts xs (unboxᵗᵖ u))) nilˢᵖ y = neⁿᶠ (mspⁿᵉ i ts xs (unboxᵗᵖ u′))
where u′ = reduce u nilˢᵖ (mmono⊢ᵗᵖ weak⊆ y)
reduce (neⁿᶠ t {{()}}) (appˢᵖ xs u) y
reduce (neⁿᶠ t {{()}}) (fstˢᵖ xs) y
reduce (neⁿᶠ t {{()}}) (sndˢᵖ xs) y
reduce (lamⁿᶠ t) (appˢᵖ xs u) y = reduce ([ top ≔ u ]ⁿᶠ t) xs y
reduce (boxⁿᶠ t) nilˢᵖ (unboxᵗᵖ u) = m[ top ≔ t ]ⁿᶠ u
reduce (pairⁿᶠ t u) (fstˢᵖ xs) y = reduce t xs y
reduce (pairⁿᶠ t u) (sndˢᵖ xs) y = reduce u xs y
appⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B
appⁿᶠ (neⁿᶠ t {{()}})
appⁿᶠ (lamⁿᶠ t) u = [ top ≔ u ]ⁿᶠ t
multicutⁿᶠ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Ξ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ A
multicutⁿᶠ {∅} ∙ u = mono⊢ⁿᶠ bot⊆ u
multicutⁿᶠ {Ξ , B} (ts , t) u = appⁿᶠ (multicutⁿᶠ ts (lamⁿᶠ u)) t
fstⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A ∧ B → Γ ⁏ Δ ⊢ⁿᶠ A
fstⁿᶠ (neⁿᶠ t {{()}})
fstⁿᶠ (pairⁿᶠ t u) = t
sndⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A ∧ B → Γ ⁏ Δ ⊢ⁿᶠ B
sndⁿᶠ (neⁿᶠ t {{()}})
sndⁿᶠ (pairⁿᶠ t u) = u
≪appˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ C ⦙ B
≪appˢᵖ nilˢᵖ t = appˢᵖ nilˢᵖ t
≪appˢᵖ (appˢᵖ xs u) t = appˢᵖ (≪appˢᵖ xs t) u
≪appˢᵖ (fstˢᵖ xs) t = fstˢᵖ (≪appˢᵖ xs t)
≪appˢᵖ (sndˢᵖ xs) t = sndˢᵖ (≪appˢᵖ xs t)
≪fstˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A
≪fstˢᵖ nilˢᵖ = fstˢᵖ nilˢᵖ
≪fstˢᵖ (appˢᵖ xs u) = appˢᵖ (≪fstˢᵖ xs) u
≪fstˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪fstˢᵖ xs)
≪fstˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪fstˢᵖ xs)
≪sndˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⁏ Δ ⊢ˢᵖ C ⦙ B
≪sndˢᵖ nilˢᵖ = sndˢᵖ nilˢᵖ
≪sndˢᵖ (appˢᵖ xs u) = appˢᵖ (≪sndˢᵖ xs) u
≪sndˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪sndˢᵖ xs)
≪sndˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪sndˢᵖ xs)
varⁿᵉ : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ⁿᵉ A
varⁿᵉ i = spⁿᵉ i nilˢᵖ nilᵗᵖ
appⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᵉ B
appⁿᵉ (spⁿᵉ i xs nilᵗᵖ) t = spⁿᵉ i (≪appˢᵖ xs t) nilᵗᵖ
appⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ u)) t = spⁿᵉ i xs (unboxᵗᵖ u′)
where u′ = appⁿᶠ u (mmono⊢ⁿᶠ weak⊆ t)
appⁿᵉ (mspⁿᵉ i ts xs nilᵗᵖ) t = mspⁿᵉ i ts (≪appˢᵖ xs t) nilᵗᵖ
appⁿᵉ (mspⁿᵉ i ts xs (unboxᵗᵖ u)) t = mspⁿᵉ i ts xs (unboxᵗᵖ u′)
where u′ = appⁿᶠ u (mmono⊢ⁿᶠ weak⊆ t)
mvarⁿᵉ : ∀ {Ψ A Γ Δ} → [ Ψ ] A ∈ Δ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ψ → Γ ⁏ Δ ⊢ⁿᵉ A
mvarⁿᵉ i ts = mspⁿᵉ i ts nilˢᵖ nilᵗᵖ
fstⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ∧ B → Γ ⁏ Δ ⊢ⁿᵉ A
fstⁿᵉ (spⁿᵉ i xs nilᵗᵖ) = spⁿᵉ i (≪fstˢᵖ xs) nilᵗᵖ
fstⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ u)) = spⁿᵉ i xs (unboxᵗᵖ (fstⁿᶠ u))
fstⁿᵉ (mspⁿᵉ i ts xs nilᵗᵖ) = mspⁿᵉ i ts (≪fstˢᵖ xs) nilᵗᵖ
fstⁿᵉ (mspⁿᵉ i ts xs (unboxᵗᵖ u)) = mspⁿᵉ i ts xs (unboxᵗᵖ (fstⁿᶠ u))
sndⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ∧ B → Γ ⁏ Δ ⊢ⁿᵉ B
sndⁿᵉ (spⁿᵉ i xs nilᵗᵖ) = spⁿᵉ i (≪sndˢᵖ xs) nilᵗᵖ
sndⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ u)) = spⁿᵉ i xs (unboxᵗᵖ (sndⁿᶠ u))
sndⁿᵉ (mspⁿᵉ i ts xs nilᵗᵖ) = mspⁿᵉ i ts (≪sndˢᵖ xs) nilᵗᵖ
sndⁿᵉ (mspⁿᵉ i ts xs (unboxᵗᵖ u)) = mspⁿᵉ i ts xs (unboxᵗᵖ (sndⁿᶠ u))
expand : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ⁿᶠ A
expand {α P} t = neⁿᶠ t {{α P}}
expand {A ▻ B} t = lamⁿᶠ (expand (appⁿᵉ (mono⊢ⁿᵉ weak⊆ t) (expand (varⁿᵉ top))))
expand {[ Ψ ] A} t = neⁿᶠ t {{[ Ψ ] A}}
expand {A ∧ B} t = pairⁿᶠ (expand (fstⁿᵉ t)) (expand (sndⁿᵉ t))
expand {⊤} t = unitⁿᶠ
varⁿᶠ : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ⁿᶠ A
varⁿᶠ i = expand (varⁿᵉ i)
mvarⁿᶠ : ∀ {Ψ A Γ Δ} → [ Ψ ] A ∈ Δ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ψ → Γ ⁏ Δ ⊢ⁿᶠ A
mvarⁿᶠ i ts = expand (mvarⁿᵉ i ts)
mutual
unboxⁿᶠ : ∀ {Ψ A C Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ [ Ψ ] A → Γ ⁏ Δ , [ Ψ ] A ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ⁿᶠ C
unboxⁿᶠ (neⁿᶠ t) u = expand (unboxⁿᵉ t u)
unboxⁿᶠ (boxⁿᶠ t) u = m[ top ≔ t ]ⁿᶠ u
unboxⁿᵉ : ∀ {Ψ A C Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ [ Ψ ] A → Γ ⁏ Δ , [ Ψ ] A ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ⁿᵉ C
unboxⁿᵉ (spⁿᵉ i xs nilᵗᵖ) u = spⁿᵉ i xs (unboxᵗᵖ u)
unboxⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ t)) u = spⁿᵉ i xs (unboxᵗᵖ u′)
where u′ = unboxⁿᶠ t (mmono⊢ⁿᶠ (keep (weak⊆)) u)
unboxⁿᵉ (mspⁿᵉ i ts xs nilᵗᵖ) u = mspⁿᵉ i ts xs (unboxᵗᵖ u)
unboxⁿᵉ (mspⁿᵉ i ts xs (unboxᵗᵖ t)) u = mspⁿᵉ i ts xs (unboxᵗᵖ u′)
where u′ = unboxⁿᶠ t (mmono⊢ⁿᶠ (keep (weak⊆)) u)
mutual
tm→nf : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ⁿᶠ A
tm→nf (var i) = varⁿᶠ i
tm→nf (lam t) = lamⁿᶠ (tm→nf t)
tm→nf (app t u) = appⁿᶠ (tm→nf t) (tm→nf u)
tm→nf (mvar i ts) = mvarⁿᶠ i (tm→nf⋆ ts)
tm→nf (box t) = boxⁿᶠ (tm→nf t)
tm→nf (unbox t u) = unboxⁿᶠ (tm→nf t) (tm→nf u)
tm→nf (pair t u) = pairⁿᶠ (tm→nf t) (tm→nf u)
tm→nf (fst t) = fstⁿᶠ (tm→nf t)
tm→nf (snd t) = sndⁿᶠ (tm→nf t)
tm→nf unit = unitⁿᶠ
tm→nf⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ
tm→nf⋆ ∙ = ∙
tm→nf⋆ (ts , t) = tm→nf⋆ ts , tm→nf t
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = nf→tm ∘ tm→nf