{-# OPTIONS --allow-unsolved-metas #-}
module A201606.PfenningDaviesS4.HereditarySubstitution3 where
open import A201606.PfenningDaviesS4.Syntax public
open import Data.Product using (_×_) renaming (_,_ to _∙_)
open import Function using (_∘_)
mutual
data No (Γ Δ : Cx Ty) : Ty → Set where
lamₙ : ∀ {A B} → No (Γ , A) Δ B → No Γ Δ (A ⊃ B)
pairₙ : ∀ {A B} → No Γ Δ A → No Γ Δ B → No Γ Δ (A ∧ B)
unitₙ : No Γ Δ ⊤
boxₙ : ∀ {A} → No ∅ Δ A → No Γ Δ (□ A)
neₙ : Ne Γ Δ ι → No Γ Δ ι
data Ne (Γ Δ : Cx Ty) : Ty → Set where
spₙ : ∀ {A B} → Sp Γ Δ (B ∙ A) → A ∈ Γ → Ne Γ Δ B
data Sp (Γ Δ : Cx Ty) : Ty × Ty → Set where
∅ₛ : ∀ {A} → Sp Γ Δ (A ∙ A)
appₛ : ∀ {A B K} → Sp Γ Δ (K ∙ B) → No Γ Δ A → Sp Γ Δ (K ∙ (A ⊃ B))
fstₛ : ∀ {A B K} → Sp Γ Δ (K ∙ A) → Sp Γ Δ (K ∙ (A ∧ B))
sndₛ : ∀ {A B K} → Sp Γ Δ (K ∙ B) → Sp Γ Δ (K ∙ (A ∧ B))
unboxₛ : ∀ {A C K} → Sp Γ Δ (K ∙ C) → No Γ (Δ , A) C → Sp Γ Δ (K ∙ (□ A))
mutual
ren-no : ∀ {Γ Γ′ Δ} → Renᵢ Γ Γ′ → Ren (flip No Δ) Γ Γ′
ren-no ρ (lamₙ t) = lamₙ (ren-no (wk-renᵢ ρ) t)
ren-no ρ (pairₙ t u) = pairₙ (ren-no ρ t) (ren-no ρ u)
ren-no ρ unitₙ = unitₙ
ren-no ρ (boxₙ t) = boxₙ t
ren-no ρ (neₙ t) = neₙ (ren-ne ρ t)
ren-ne : ∀ {Γ Γ′ Δ} → Renᵢ Γ Γ′ → Ren (flip Ne Δ) Γ Γ′
ren-ne ρ (spₙ ss i) = spₙ (ren-sp ρ ss) (ρ i)
ren-sp : ∀ {Γ Γ′ Δ} → Renᵢ Γ Γ′ → Ren (flip Sp Δ) Γ Γ′
ren-sp ρ ∅ₛ = ∅ₛ
ren-sp ρ (appₛ ss t) = appₛ (ren-sp ρ ss) (ren-no ρ t)
ren-sp ρ (fstₛ ss) = fstₛ (ren-sp ρ ss)
ren-sp ρ (sndₛ ss) = sndₛ (ren-sp ρ ss)
ren-sp ρ (unboxₛ ss t) = unboxₛ (ren-sp ρ ss) (ren-no ρ t)
wk-no : ∀ {A Γ Δ} → Ren (flip No Δ) Γ (Γ , A)
wk-no = ren-no pop
wk-ne : ∀ {A Γ Δ} → Ren (flip Ne Δ) Γ (Γ , A)
wk-ne = ren-ne pop
wk-no∅ : ∀ {Γ Δ} → Ren (flip No Δ) ∅ Γ
wk-no∅ = ren-no (λ ())
mutual
⋆ren-no : ∀ {Γ Δ Δ′} → Renᵢ Δ Δ′ → Ren (No Γ) Δ Δ′
⋆ren-no ρ (lamₙ t) = lamₙ (⋆ren-no ρ t)
⋆ren-no ρ (pairₙ t u) = pairₙ (⋆ren-no ρ t) (⋆ren-no ρ u)
⋆ren-no ρ unitₙ = unitₙ
⋆ren-no ρ (boxₙ t) = boxₙ (⋆ren-no ρ t)
⋆ren-no ρ (neₙ t) = neₙ (⋆ren-ne ρ t)
⋆ren-ne : ∀ {Γ Δ Δ′} → Renᵢ Δ Δ′ → Ren (Ne Γ) Δ Δ′
⋆ren-ne ρ (spₙ ss i) = spₙ (⋆ren-sp ρ ss) i
⋆ren-sp : ∀ {Γ Δ Δ′} → Renᵢ Δ Δ′ → Ren (Sp Γ) Δ Δ′
⋆ren-sp ρ ∅ₛ = ∅ₛ
⋆ren-sp ρ (appₛ ss t) = appₛ (⋆ren-sp ρ ss) (⋆ren-no ρ t)
⋆ren-sp ρ (fstₛ ss) = fstₛ (⋆ren-sp ρ ss)
⋆ren-sp ρ (sndₛ ss) = sndₛ (⋆ren-sp ρ ss)
⋆ren-sp ρ (unboxₛ ss t) = unboxₛ (⋆ren-sp ρ ss) (⋆ren-no (wk-renᵢ ρ) t)
⋆wk-no : ∀ {A Γ Δ} → Ren (No Γ) Δ (Δ , A)
⋆wk-no = ⋆ren-no pop
⋆wk-ne : ∀ {A Γ Δ} → Ren (Ne Γ) Δ (Δ , A)
⋆wk-ne = ⋆ren-ne pop
⋆wk-no∅ : ∀ {A Δ} → Ren (No ∅) Δ (Δ , A)
⋆wk-no∅ = wk-no∅ ∘ ⋆wk-no
mutual
[_≔_]ₙ_ : ∀ {A Γ Δ} → (i : A ∈ Γ) → No (Γ -ᵢ i) Δ A → Sub (flip No Δ) Γ (Γ -ᵢ i)
[ i ≔ ν ]ₙ (lamₙ t) = lamₙ ([ pop i ≔ wk-no ν ]ₙ t)
[ i ≔ ν ]ₙ (pairₙ t u) = pairₙ ([ i ≔ ν ]ₙ t) ([ i ≔ ν ]ₙ u)
[ i ≔ ν ]ₙ unitₙ = unitₙ
[ i ≔ ν ]ₙ (boxₙ t) = boxₙ t
[ i ≔ ν ]ₙ (neₙ (spₙ ss j)) with i ≟ᵢ j
[ i ≔ ν ]ₙ (neₙ (spₙ ss .i)) | same = reduce ([ i ≔ ν ]ₛ ss) ν
[ i ≔ ν ]ₙ (neₙ (spₙ ss ._)) | diff j = neₙ (spₙ ([ i ≔ ν ]ₛ ss) j)
[_≔_]ₛ_ : ∀ {A Γ Δ} → (i : A ∈ Γ) → No (Γ -ᵢ i) Δ A → Sub (flip Sp Δ) Γ (Γ -ᵢ i)
[ i ≔ ν ]ₛ ∅ₛ = ∅ₛ
[ i ≔ ν ]ₛ (appₛ ss t) = appₛ ([ i ≔ ν ]ₛ ss) ([ i ≔ ν ]ₙ t)
[ i ≔ ν ]ₛ (fstₛ ss) = fstₛ ([ i ≔ ν ]ₛ ss)
[ i ≔ ν ]ₛ (sndₛ ss) = sndₛ ([ i ≔ ν ]ₛ ss)
[ i ≔ ν ]ₛ (unboxₛ ss t) = unboxₛ ([ i ≔ ν ]ₛ ss) ([ i ≔ ⋆wk-no ν ]ₙ t)
⋆[_≔_]ₙ_ : ∀ {A Γ Δ} → (i : A ∈ Δ) → No ∅ (Δ -ᵢ i) A → Sub (No Γ) Δ (Δ -ᵢ i)
⋆[ i ≔ ν ]ₙ (lamₙ t) = lamₙ (⋆[ i ≔ ν ]ₙ t)
⋆[ i ≔ ν ]ₙ (pairₙ t u) = pairₙ (⋆[ i ≔ ν ]ₙ t) (⋆[ i ≔ ν ]ₙ u)
⋆[ i ≔ ν ]ₙ unitₙ = unitₙ
⋆[ i ≔ ν ]ₙ (boxₙ t) = boxₙ (⋆[ i ≔ ν ]ₙ t)
⋆[ i ≔ ν ]ₙ (neₙ (spₙ ss j)) = neₙ (spₙ (⋆[ i ≔ ν ]ₛ ss) j)
⋆[_≔_]ₛ_ : ∀ {A Γ Δ} → (i : A ∈ Δ) → No ∅ (Δ -ᵢ i) A → Sub (Sp Γ) Δ (Δ -ᵢ i)
⋆[ i ≔ ν ]ₛ ∅ₛ = ∅ₛ
⋆[ i ≔ ν ]ₛ (appₛ ss t) = appₛ (⋆[ i ≔ ν ]ₛ ss) (⋆[ i ≔ ν ]ₙ t)
⋆[ i ≔ ν ]ₛ (fstₛ ss) = fstₛ (⋆[ i ≔ ν ]ₛ ss)
⋆[ i ≔ ν ]ₛ (sndₛ ss) = sndₛ (⋆[ i ≔ ν ]ₛ ss)
⋆[ i ≔ ν ]ₛ (unboxₛ ss t) = unboxₛ (⋆[ i ≔ ν ]ₛ ss) {!!}
reduce : ∀ {A B Γ Δ} → Sp Γ Δ (B ∙ A) → No Γ Δ A → No Γ Δ B
reduce ∅ₛ t = t
reduce (appₛ ss u) (lamₙ t) = reduce ss ([ top ≔ u ]ₙ t)
reduce (fstₛ ss) (pairₙ t u) = reduce ss t
reduce (sndₛ ss) (pairₙ t u) = reduce ss u
reduce (unboxₛ ss u) (boxₙ t) = {!!}