module A201605.TowardsAltArtemov.SyntaxSimpleCatholicRadical where open import Data.Nat using (ℕ ; zero ; suc) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; cong₂) open import Relation.Nullary using (Dec ; yes ; no) data _≥_ : ℕ → ℕ → Set where id : ∀ {n} → n ≥ n weak : ∀ {n′ n} → n′ ≥ n → suc n′ ≥ n lift : ∀ {n′ n} → n′ ≥ n → suc n′ ≥ suc n _○_ : ∀ {n″ n′ n} → n″ ≥ n′ → n′ ≥ n → n″ ≥ n id ○ p = p weak p′ ○ p = weak (p′ ○ p) lift p′ ○ id = lift p′ lift p′ ○ weak p = weak (p′ ○ p) lift p′ ○ lift p = lift (p′ ○ p) data °Var : Set where °top : °Var °pop : °Var → °Var data °Tm : Set where °var⟨_⟩ : ℕ → °Var → °Tm °lam⟨_⟩ : ℕ → °Tm → °Tm °app⟨_⟩ : ℕ → °Tm → °Tm → °Tm °pair⟨_⟩ : ℕ → °Tm → °Tm → °Tm °fst⟨_⟩ : ℕ → °Tm → °Tm °snd⟨_⟩ : ℕ → °Tm → °Tm °up⟨_⟩ : ℕ → °Tm → °Tm °down⟨_⟩ : ℕ → °Tm → °Tm !_ : °Tm → °Tm data Ty : Set where ★ : Ty _⊃_ : Ty → Ty → Ty _∧_ : Ty → Ty → Ty _∶_ : °Tm → Ty → Ty infixr 15 _∶_ infixr 5 _⊃_ data Cx : Set where ∅ : Cx _,_ : Cx → Ty → Cx ⁿ⌊_⌋ : (Γ : Cx) → ℕ ⁿ⌊ ∅ ⌋ = zero ⁿ⌊ Γ , A ⌋ = suc ⁿ⌊ Γ ⌋ data _⊇_ : Cx → Cx → Set where id : ∀ {Γ} → Γ ⊇ Γ weak : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ Γ lift : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ (Γ , A) ᵖ⌊_⌋ : ∀ {Γ′ Γ} → Γ ⊇ Γ′ → ⁿ⌊ Γ ⌋ ≥ ⁿ⌊ Γ′ ⌋ ᵖ⌊ id ⌋ = id ᵖ⌊ weak η ⌋ = weak ᵖ⌊ η ⌋ ᵖ⌊ lift η ⌋ = lift ᵖ⌊ η ⌋ _●_ : ∀ {Γ″ Γ′ Γ} → Γ″ ⊇ Γ′ → Γ′ ⊇ Γ → Γ″ ⊇ Γ id ● η = η weak η′ ● η = weak (η′ ● η) lift η′ ● id = lift η′ lift η′ ● weak η = weak (η′ ● η) lift η′ ● lift η = lift (η′ ● η) to : ∀ Γ → Γ ⊇ ∅ to ∅ = id to (Γ , A) = weak (to Γ) str : ∀ {Γ′ Γ A} → Γ′ ⊇ (Γ , A) → Γ′ ⊇ Γ str id = weak id str (weak η) = weak (str η) str (lift η) = weak η low : ∀ {Γ′ Γ A} → (Γ′ , A) ⊇ (Γ , A) → Γ′ ⊇ Γ low id = id low (weak η) = str η low (lift η) = η data Var : Cx → Ty → Set where top : ∀ {Γ A} → Var (Γ , A) A pop : ∀ {Γ A B} → Var Γ A → Var (Γ , B) A ⁱ⌊_⌋ : ∀ {Γ A} → Var Γ A → °Var ⁱ⌊ top ⌋ = °top ⁱ⌊ pop x ⌋ = °pop ⁱ⌊ x ⌋ ↑var : ∀ {Γ′ Γ A} (η : Γ′ ⊇ Γ) → Var Γ A → Var Γ′ A ↑var id x = x ↑var (weak η) x = pop (↑var η x) ↑var (lift η) top = top ↑var (lift η) (pop x) = pop (↑var η x) ↥var : ∀ Γ {A} → Var ∅ A → Var Γ A ↥var Γ () data Vec : ℕ → Set where [] : Vec 0 _∷_ : ∀ {n} → °Tm → Vec n → Vec (suc n) _∴_ : ∀ {n} → Vec n → Ty → Ty [] ∴ A = A (t ∷ ts) ∴ A = t ∶ (ts ∴ A) infixr 15 _∴_ °lams⟨_⟩ : ∀ n → Vec n → Vec n °lams⟨ zero ⟩ [] = [] °lams⟨ suc n ⟩ (t ∷ ts) = °lam⟨ n ⟩ t ∷ °lams⟨ n ⟩ ts °apps⟨_⟩ : ∀ n → Vec n → Vec n → Vec n °apps⟨ zero ⟩ [] [] = [] °apps⟨ suc n ⟩ (t ∷ ts) (u ∷ us) = °app⟨ n ⟩ t u ∷ °apps⟨ n ⟩ ts us °pairs⟨_⟩ : ∀ n → Vec n → Vec n → Vec n °pairs⟨ zero ⟩ [] [] = [] °pairs⟨ suc n ⟩ (t ∷ ts) (u ∷ us) = °pair⟨ n ⟩ t u ∷ °pairs⟨ n ⟩ ts us °fsts⟨_⟩ : ∀ n → Vec n → Vec n °fsts⟨ zero ⟩ [] = [] °fsts⟨ suc n ⟩ (t ∷ ts) = °fst⟨ n ⟩ t ∷ °fsts⟨ n ⟩ ts °snds⟨_⟩ : ∀ n → Vec n → Vec n °snds⟨ zero ⟩ [] = [] °snds⟨ suc n ⟩ (t ∷ ts) = °snd⟨ n ⟩ t ∷ °snds⟨ n ⟩ ts °ups⟨_⟩ : ∀ n → Vec n → Vec n °ups⟨ zero ⟩ [] = [] °ups⟨ suc n ⟩ (t ∷ ts) = °up⟨ n ⟩ t ∷ °ups⟨ n ⟩ ts °downs⟨_⟩ : ∀ n → Vec n → Vec n °downs⟨ zero ⟩ [] = [] °downs⟨ suc n ⟩ (t ∷ ts) = °down⟨ n ⟩ t ∷ °downs⟨ n ⟩ ts data Tm (Γ : Cx) (Z : Ty) : Set where var : Var Γ Z → Tm Γ Z lam⟨_⟩ : ∀ n {ts : Vec n} {A B} → Tm (Γ , A) (ts ∴ B) → {{_ : Z ≡ °lams⟨ n ⟩ ts ∴ (A ⊃ B)}} → Tm Γ Z app⟨_⟩ : ∀ n {ts us : Vec n} {A B} → Tm Γ (ts ∴ (A ⊃ B)) → Tm Γ (us ∴ A) → {{_ : Z ≡ °apps⟨ n ⟩ ts us ∴ B}} → Tm Γ Z pair⟨_⟩ : ∀ n {ts us : Vec n} {A B} → Tm Γ (ts ∴ A) → Tm Γ (us ∴ B) → {{_ : Z ≡ °pairs⟨ n ⟩ ts us ∴ (A ∧ B)}} → Tm Γ Z fst⟨_⟩ : ∀ n {ts : Vec n} {A B} → Tm Γ (ts ∴ (A ∧ B)) → {{_ : Z ≡ °fsts⟨ n ⟩ ts ∴ A}} → Tm Γ Z snd⟨_⟩ : ∀ n {ts : Vec n} {A B} → Tm Γ (ts ∴ (A ∧ B)) → {{_ : Z ≡ °snds⟨ n ⟩ ts ∴ B}} → Tm Γ Z up⟨_⟩ : ∀ n {ts : Vec n} {u : °Tm} {A} → Tm Γ (ts ∴ u ∶ A) → {{_ : Z ≡ °ups⟨ n ⟩ ts ∴ ! u ∶ u ∶ A}} → Tm Γ Z down⟨_⟩ : ∀ n {ts : Vec n} {u : °Tm} {A} → Tm Γ (ts ∴ u ∶ A) → {{_ : Z ≡ °downs⟨ n ⟩ ts ∴ A}} → Tm Γ Z ↑tm : ∀ {Γ′ Γ A} (η : Γ′ ⊇ Γ) → Tm Γ A → Tm Γ′ A ↑tm η (var x) = var (↑var η x) ↑tm η (lam⟨ n ⟩ t {{refl}}) = lam⟨ n ⟩ (↑tm (lift η) t) {{refl}} ↑tm η (app⟨ n ⟩ t u {{refl}}) = app⟨ n ⟩ (↑tm η t) (↑tm η u) {{refl}} ↑tm η (pair⟨ n ⟩ t u {{refl}}) = pair⟨ n ⟩ (↑tm η t) (↑tm η u) {{refl}} ↑tm η (fst⟨ n ⟩ t {{refl}}) = fst⟨ n ⟩ (↑tm η t) {{refl}} ↑tm η (snd⟨ n ⟩ t {{refl}}) = snd⟨ n ⟩ (↑tm η t) {{refl}} ↑tm η (up⟨ n ⟩ t {{refl}}) = up⟨ n ⟩ (↑tm η t) {{refl}} ↑tm η (down⟨ n ⟩ t {{refl}}) = down⟨ n ⟩ (↑tm η t) {{refl}} ↥tm : ∀ Γ {A} → Tm ∅ A → Tm Γ A ↥tm Γ = ↑tm (to Γ) data Ne (Ξ : Cx → Ty → Set) (Γ : Cx) (Z : Ty) : Set where var : Var Γ Z → Ne Ξ Γ Z app⟨_⟩ : ∀ n {ts us : Vec n} {A B} → Ne Ξ Γ (ts ∴ (A ⊃ B)) → Ξ Γ (us ∴ A) → {{_ : Z ≡ °apps⟨ n ⟩ ts us ∴ B}} → Ne Ξ Γ Z fst⟨_⟩ : ∀ n {ts : Vec n} {A B} → Ne Ξ Γ (ts ∴ (A ∧ B)) → {{_ : Z ≡ °fsts⟨ n ⟩ ts ∴ A}} → Ne Ξ Γ Z snd⟨_⟩ : ∀ n {ts : Vec n} {A B} → Ne Ξ Γ (ts ∴ (A ∧ B)) → {{_ : Z ≡ °snds⟨ n ⟩ ts ∴ B}} → Ne Ξ Γ Z down⟨_⟩ : ∀ n {ts : Vec n} {u : °Tm} {A} → Ne Ξ Γ (ts ∴ u ∶ A) → {{_ : Z ≡ °downs⟨ n ⟩ ts ∴ A}} → Ne Ξ Γ Z data Nf (Δ : Cx) (Z : Ty) : Set where ne : Ne Nf Δ Z → {{_ : Z ≡ ★}} → Nf Δ Z lam⟨_⟩ : ∀ n {ts : Vec n} {A B} → Nf (Δ , A) (ts ∴ B) → {{_ : Z ≡ °lams⟨ n ⟩ ts ∴ (A ⊃ B)}} → Nf Δ Z pair⟨_⟩ : ∀ n {ts us : Vec n} {A B} → Nf Δ (ts ∴ A) → Nf Δ (us ∴ B) → {{_ : Z ≡ °pairs⟨ n ⟩ ts us ∴ (A ∧ B)}} → Nf Δ Z up⟨_⟩ : ∀ n {ts : Vec n} {u : °Tm} {A} → Nf Δ (ts ∴ u ∶ A) → {{_ : Z ≡ °ups⟨ n ⟩ ts ∴ ! u ∶ u ∶ A}} → Nf Δ Z mutual data Val (Δ : Cx) (Z : Ty) : Set where ne : Ne Val Δ Z → Val Δ Z lam⟨_⟩ : ∀ n {ts : Vec n} {A B Γ} → Tm (Γ , A) (ts ∴ B) → Env Δ Γ → {{_ : Z ≡ °lams⟨ n ⟩ ts ∴ (A ⊃ B)}} → Val Δ Z pair⟨_⟩ : ∀ n {ts us : Vec n} {A B} → Val Δ (ts ∴ A) → Val Δ (us ∴ B) → {{_ : Z ≡ °pairs⟨ n ⟩ ts us ∴ (A ∧ B)}} → Val Δ Z up⟨_⟩ : ∀ n {ts : Vec n} {u : °Tm} {A} → Val Δ (ts ∴ u ∶ A) → {{_ : Z ≡ °ups⟨ n ⟩ ts ∴ ! u ∶ u ∶ A}} → Val Δ Z data Env (Δ : Cx) : Cx → Set where ∅ : Env Δ ∅ _,_ : ∀ {Γ A} → Env Δ Γ → Val Δ A → Env Δ (Γ , A) mutual ↑nen : ∀ {Δ′ Δ A} (η : Δ′ ⊇ Δ) → Ne Nf Δ A → Ne Nf Δ′ A ↑nen η (var x) = var (↑var η x) ↑nen η (app⟨ n ⟩ t u {{refl}}) = app⟨ n ⟩ (↑nen η t) (↑nf η u) {{refl}} ↑nen η (fst⟨ n ⟩ t {{refl}}) = fst⟨ n ⟩ (↑nen η t) {{refl}} ↑nen η (snd⟨ n ⟩ t {{refl}}) = snd⟨ n ⟩ (↑nen η t) {{refl}} ↑nen η (down⟨ n ⟩ t {{refl}}) = down⟨ n ⟩ (↑nen η t) {{refl}} ↑nev : ∀ {Δ′ Δ A} (η : Δ′ ⊇ Δ) → Ne Val Δ A → Ne Val Δ′ A ↑nev η (var x) = var (↑var η x) ↑nev η (app⟨ n ⟩ t u {{refl}}) = app⟨ n ⟩ (↑nev η t) (↑val η u) {{refl}} ↑nev η (fst⟨ n ⟩ t {{refl}}) = fst⟨ n ⟩ (↑nev η t) {{refl}} ↑nev η (snd⟨ n ⟩ t {{refl}}) = snd⟨ n ⟩ (↑nev η t) {{refl}} ↑nev η (down⟨ n ⟩ t {{refl}}) = down⟨ n ⟩ (↑nev η t) {{refl}} ↑nf : ∀ {Δ′ Δ A} (η : Δ′ ⊇ Δ) → Nf Δ A → Nf Δ′ A ↑nf η (ne n) = ne (↑nen η n) ↑nf η (lam⟨ n ⟩ t {{refl}}) = lam⟨ n ⟩ (↑nf (lift η) t) {{refl}} ↑nf η (pair⟨ n ⟩ t u {{refl}}) = pair⟨ n ⟩ (↑nf η t) (↑nf η u) {{refl}} ↑nf η (up⟨ n ⟩ t {{refl}}) = up⟨ n ⟩ (↑nf η t) {{refl}} ↑val : ∀ {Δ′ Δ A} (η : Δ′ ⊇ Δ) → Val Δ A → Val Δ′ A ↑val η (ne n) = ne (↑nev η n) ↑val η (lam⟨ n ⟩ t γ {{refl}}) = lam⟨ n ⟩ t (↑env η γ) {{refl}} ↑val η (pair⟨ n ⟩ t u {{refl}}) = pair⟨ n ⟩ (↑val η t) (↑val η u) {{refl}} ↑val η (up⟨ n ⟩ t {{refl}}) = up⟨ n ⟩ (↑val η t) {{refl}} ↑env : ∀ {Δ′ Δ Γ} (η : Δ′ ⊇ Δ) → Env Δ Γ → Env Δ′ Γ ↑env η ∅ = ∅ ↑env η (γ , t) = (↑env η γ , ↑val η t)