module A201605.AltArtemov.Old.HN.Core where open import A201605.AltArtemov.Old.HN.Tm public data Ty : ℕ → Set where ⊥ : ∀ {n} → Ty n _⊃_ : ∀ {n} → Ty n → Ty n → Ty n _∧_ : ∀ {n} → Ty n → Ty n → Ty n _∶_ : ∀ {g n} → Tm g n → Ty n → Ty (suc n) infixr 5 _⊃_ infixr 15 _∶_ data Cx : Set where ∅ : Cx _,_ : ∀ {n} → Cx → Ty n → Cx ᵍ⌊_⌋ : Cx → ℕ ᵍ⌊ ∅ ⌋ = zero ᵍ⌊ Γ , A ⌋ = suc ᵍ⌊ Γ ⌋ data _⊇_ : Cx → Cx → Set where base : ∅ ⊇ ∅ weak : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ Γ lift : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ (Γ , A) ʰ⌊_⌋ : ∀ {Γ Γ′} → Γ′ ⊇ Γ → ᵍ⌊ Γ′ ⌋ ≥ ᵍ⌊ Γ ⌋ ʰ⌊ base ⌋ = base ʰ⌊ weak η ⌋ = weak ʰ⌊ η ⌋ ʰ⌊ lift η ⌋ = lift ʰ⌊ η ⌋ ⊇id : ∀ {Γ} → Γ ⊇ Γ ⊇id {∅} = base ⊇id {Γ , A} = lift ⊇id ⊇to : ∀ {Γ} → Γ ⊇ ∅ ⊇to {∅} = base ⊇to {Γ , A} = weak ⊇to ⊇wk : ∀ {Γ n} {A : Ty n} → (Γ , A) ⊇ Γ ⊇wk = weak ⊇id ⊇str : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ (Γ , A) → Γ′ ⊇ Γ ⊇str (weak η) = weak (⊇str η) ⊇str (lift η) = weak η ⊇drop : ∀ {Γ Γ′ n} {A : Ty n} → (Γ′ , A) ⊇ (Γ , A) → Γ′ ⊇ Γ ⊇drop (weak η) = ⊇str η ⊇drop (lift η) = η _●_ : ∀ {Γ Γ′ Γ″} → Γ″ ⊇ Γ′ → Γ′ ⊇ Γ → Γ″ ⊇ Γ base ● η = η weak η′ ● η = weak (η′ ● η) lift η′ ● weak η = weak (η′ ● η) lift η′ ● lift η = lift (η′ ● η) η●id : ∀ {Γ Γ′} (η : Γ′ ⊇ Γ) → η ● ⊇id ≡ η η●id base = refl η●id (weak η) = cong weak (η●id η) η●id (lift η) = cong lift (η●id η) id●η : ∀ {Γ Γ′} (η : Γ′ ⊇ Γ) → ⊇id ● η ≡ η id●η base = refl id●η (weak η) = cong weak (id●η η) id●η (lift η) = cong lift (id●η η) id-⌊⌋-id : ∀ Γ → ʰ⌊ ⊇id {Γ} ⌋ ≡ ≥id {ᵍ⌊ Γ ⌋} id-⌊⌋-id ∅ = refl id-⌊⌋-id (Γ , A) = cong lift (id-⌊⌋-id Γ) to-⌊⌋-to : ∀ Γ → ʰ⌊ ⊇to {Γ} ⌋ ≡ ≥to {ᵍ⌊ Γ ⌋} to-⌊⌋-to ∅ = refl to-⌊⌋-to (Γ , A) = cong weak (to-⌊⌋-to Γ) ren-fin-⌊⌋-id : ∀ {Γ} (i : Fin ᵍ⌊ Γ ⌋) → ren-fin ʰ⌊ ⊇id ⌋ i ≡ i ren-fin-⌊⌋-id {Γ} i rewrite id-⌊⌋-id Γ = ren-fin-id i ren-tm-⌊⌋-id : ∀ {Γ n} (t : Tm ᵍ⌊ Γ ⌋ n) → ren-tm ʰ⌊ ⊇id ⌋ t ≡ t ren-tm-⌊⌋-id {Γ} t rewrite id-⌊⌋-id Γ = ren-tm-id t data Var : ∀ {n} → Cx → Ty n → Set where top : ∀ {Γ n} {A : Ty n} → Var (Γ , A) A pop : ∀ {Γ n n′} {A : Ty n} {B : Ty n′} → Var Γ A → Var (Γ , B) A ⁱ⌊_⌋ : ∀ {Γ n} {A : Ty n} → Var Γ A → Fin ᵍ⌊ Γ ⌋ ⁱ⌊ top ⌋ = zero ⁱ⌊ pop x ⌋ = suc ⁱ⌊ x ⌋ ren-var : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → Var Γ A → Var Γ′ A ren-var base x = x ren-var (weak η) x = pop (ren-var η x) ren-var (lift η) top = top ren-var (lift η) (pop x) = pop (ren-var η x) wk-var : ∀ {Γ n n′} {A : Ty n} {C : Ty n′} → Var Γ C → Var (Γ , A) C wk-var = ren-var ⊇wk wk*-var : ∀ {Γ n} {C : Ty n} → Var ∅ C → Var Γ C wk*-var () ren-var-id : ∀ {Γ n} {A : Ty n} (x : Var Γ A) → ren-var ⊇id x ≡ x ren-var-id top = refl ren-var-id (pop x) = cong pop (ren-var-id x) ren-var-● : ∀ {Γ Γ′ Γ″ n} {A : Ty n} (η′ : Γ″ ⊇ Γ′) (η : Γ′ ⊇ Γ) (x : Var Γ A) → ren-var η′ (ren-var η x) ≡ ren-var (η′ ● η) x ren-var-● base η x = refl ren-var-● (weak η′) η x = cong pop (ren-var-● η′ η x) ren-var-● (lift η′) (weak η) x = cong pop (ren-var-● η′ η x) ren-var-● (lift η′) (lift η) top = refl ren-var-● (lift η′) (lift η) (pop x) = cong pop (ren-var-● η′ η x) ren-fin-⌊⌋-var : ∀ {Γ Γ′ n} {A : Ty n} (η : Γ′ ⊇ Γ) (x : Var Γ A) → ren-fin ʰ⌊ η ⌋ ⁱ⌊ x ⌋ ≡ ⁱ⌊ ren-var η x ⌋ ren-fin-⌊⌋-var base x = refl ren-fin-⌊⌋-var (weak η) x = cong suc (ren-fin-⌊⌋-var η x) ren-fin-⌊⌋-var (lift η) top = refl ren-fin-⌊⌋-var (lift η) (pop x) = cong suc (ren-fin-⌊⌋-var η x) x₀ : ∀ {Γ n} {A : Ty n} → Var (Γ , A) A x₀ = top x₁ : ∀ {Γ n n′} {A : Ty n} {B : Ty n′} → Var ((Γ , A) , B) A x₁ = pop x₀ x₂ : ∀ {Γ n n′ n″} {A : Ty n} {B : Ty n′} {C : Ty n″} → Var (((Γ , A) , B) , C) A x₂ = pop x₁