module A201605.AltArtemov.Old.GN!.Core where
open import A201605.AltArtemov.Old.GN!.Tm public
data Ty : ℕ → Set where
⊥ : ∀ {n} → Ty n
_⊃_ : ∀ {n} → Ty n → Ty n → Ty n
_∧_ : ∀ {n} → Ty n → Ty n → Ty n
_∶_ : ∀ {n} → Tm 0 n → Ty n → Ty (suc n)
infixr 5 _⊃_
infixr 15 _∶_
data Cx : Set where
∅ : Cx
_,_ : ∀ {n} → Cx → Ty n → Cx
ᵍ⌊_⌋ : Cx → ℕ
ᵍ⌊ ∅ ⌋ = zero
ᵍ⌊ Γ , A ⌋ = suc ᵍ⌊ Γ ⌋
data _⊇_ : Cx → Cx → Set where
base : ∅ ⊇ ∅
weak : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ Γ
lift : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ (Γ , A)
ʰ⌊_⌋ : ∀ {Γ Γ′} → Γ′ ⊇ Γ → ᵍ⌊ Γ′ ⌋ ≥ ᵍ⌊ Γ ⌋
ʰ⌊ base ⌋ = base
ʰ⌊ weak η ⌋ = weak ʰ⌊ η ⌋
ʰ⌊ lift η ⌋ = lift ʰ⌊ η ⌋
⊇id : ∀ {Γ} → Γ ⊇ Γ
⊇id {∅} = base
⊇id {Γ , A} = lift ⊇id
⊇to : ∀ {Γ} → Γ ⊇ ∅
⊇to {∅} = base
⊇to {Γ , A} = weak ⊇to
⊇wk : ∀ {Γ n} {A : Ty n} → (Γ , A) ⊇ Γ
⊇wk = weak ⊇id
⊇str : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ (Γ , A) → Γ′ ⊇ Γ
⊇str (weak η) = weak (⊇str η)
⊇str (lift η) = weak η
⊇drop : ∀ {Γ Γ′ n} {A : Ty n} → (Γ′ , A) ⊇ (Γ , A) → Γ′ ⊇ Γ
⊇drop (weak η) = ⊇str η
⊇drop (lift η) = η
_●_ : ∀ {Γ Γ′ Γ″} → Γ″ ⊇ Γ′ → Γ′ ⊇ Γ → Γ″ ⊇ Γ
base ● η = η
weak η′ ● η = weak (η′ ● η)
lift η′ ● weak η = weak (η′ ● η)
lift η′ ● lift η = lift (η′ ● η)
η●id : ∀ {Γ Γ′} (η : Γ′ ⊇ Γ) → η ● ⊇id ≡ η
η●id base = refl
η●id (weak η) = cong weak (η●id η)
η●id (lift η) = cong lift (η●id η)
id●η : ∀ {Γ Γ′} (η : Γ′ ⊇ Γ) → ⊇id ● η ≡ η
id●η base = refl
id●η (weak η) = cong weak (id●η η)
id●η (lift η) = cong lift (id●η η)
id-⌊⌋-id : ∀ Γ → ʰ⌊ ⊇id {Γ} ⌋ ≡ ≥id {ᵍ⌊ Γ ⌋}
id-⌊⌋-id ∅ = refl
id-⌊⌋-id (Γ , A) = cong lift (id-⌊⌋-id Γ)
to-⌊⌋-to : ∀ Γ → ʰ⌊ ⊇to {Γ} ⌋ ≡ ≥to {ᵍ⌊ Γ ⌋}
to-⌊⌋-to ∅ = refl
to-⌊⌋-to (Γ , A) = cong weak (to-⌊⌋-to Γ)
ren-fin-⌊⌋-id : ∀ {Γ} (i : Fin ᵍ⌊ Γ ⌋) → ren-fin ʰ⌊ ⊇id ⌋ i ≡ i
ren-fin-⌊⌋-id {Γ} i rewrite id-⌊⌋-id Γ = ren-fin-id i
ren-tm-⌊⌋-id : ∀ {Γ n} (t : Tm ᵍ⌊ Γ ⌋ n) → ren-tm ʰ⌊ ⊇id ⌋ t ≡ t
ren-tm-⌊⌋-id {Γ} t rewrite id-⌊⌋-id Γ = ren-tm-id t
data Var : ∀ {n} → Cx → Ty n → Set where
top : ∀ {Γ n} {A : Ty n} → Var (Γ , A) A
pop : ∀ {Γ n n′} {A : Ty n} {B : Ty n′} → Var Γ A → Var (Γ , B) A
ⁱ⌊_⌋ : ∀ {Γ n} {A : Ty n} → Var Γ A → Fin ᵍ⌊ Γ ⌋
ⁱ⌊ top ⌋ = zero
ⁱ⌊ pop x ⌋ = suc ⁱ⌊ x ⌋
ren-var : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → Var Γ A → Var Γ′ A
ren-var base x = x
ren-var (weak η) x = pop (ren-var η x)
ren-var (lift η) top = top
ren-var (lift η) (pop x) = pop (ren-var η x)
wk-var : ∀ {Γ n n′} {A : Ty n} {C : Ty n′} → Var Γ C → Var (Γ , A) C
wk-var = ren-var ⊇wk
wk*-var : ∀ {Γ n} {C : Ty n} → Var ∅ C → Var Γ C
wk*-var ()
ren-var-id : ∀ {Γ n} {A : Ty n} (x : Var Γ A) → ren-var ⊇id x ≡ x
ren-var-id top = refl
ren-var-id (pop x) = cong pop (ren-var-id x)
ren-var-● : ∀ {Γ Γ′ Γ″ n} {A : Ty n} (η′ : Γ″ ⊇ Γ′) (η : Γ′ ⊇ Γ) (x : Var Γ A) →
ren-var η′ (ren-var η x) ≡ ren-var (η′ ● η) x
ren-var-● base η x = refl
ren-var-● (weak η′) η x = cong pop (ren-var-● η′ η x)
ren-var-● (lift η′) (weak η) x = cong pop (ren-var-● η′ η x)
ren-var-● (lift η′) (lift η) top = refl
ren-var-● (lift η′) (lift η) (pop x) = cong pop (ren-var-● η′ η x)
ren-fin-⌊⌋-var : ∀ {Γ Γ′ n} {A : Ty n} (η : Γ′ ⊇ Γ) (x : Var Γ A) →
ren-fin ʰ⌊ η ⌋ ⁱ⌊ x ⌋ ≡ ⁱ⌊ ren-var η x ⌋
ren-fin-⌊⌋-var base x = refl
ren-fin-⌊⌋-var (weak η) x = cong suc (ren-fin-⌊⌋-var η x)
ren-fin-⌊⌋-var (lift η) top = refl
ren-fin-⌊⌋-var (lift η) (pop x) = cong suc (ren-fin-⌊⌋-var η x)
x₀ : ∀ {Γ n} {A : Ty n} → Var (Γ , A) A
x₀ = top
x₁ : ∀ {Γ n n′} {A : Ty n} {B : Ty n′} → Var ((Γ , A) , B) A
x₁ = pop x₀
x₂ : ∀ {Γ n n′ n″} {A : Ty n} {B : Ty n′} {C : Ty n″} → Var (((Γ , A) , B) , C) A
x₂ = pop x₁