module A201605.AltArtemov.Old.Common.Vec.Basic where

open import A201605.AltArtemov.Try2.Tm public


data Vec (g k : ) :   Set where
  []  : Vec g k 0
  _∷_ :  {n}  Tm g (n + k)  Vec g k n  Vec g k (suc n)

infixr 15 _∷_

[_] :  {g k}  Tm g k  Vec g k 1
[ t ] = t  []

VARs :  {g k n}  Fin g  Vec g k n
VARs {n = zero}  i = []
VARs {n = suc n} i = VAR i  VARs i

LAMs :  {g k n}  Vec (suc g) k n  Vec g k n
LAMs []       = []
LAMs (t  ts) = LAM t  LAMs ts

APPs :  {g k n}  Vec g k n  Vec g k n  Vec g k n
APPs []       []           = []
APPs (t₁  ts₁) (t₂  ts₂) = APP t₁ t₂  APPs ts₁ ts₂

PAIRs :  {g k n}  Vec g k n  Vec g k n  Vec g k n
PAIRs []         []         = []
PAIRs (t₁  ts₁) (t₂  ts₂) = PAIR t₁ t₂  PAIRs ts₁ ts₂

FSTs :  {g k n}  Vec g k n  Vec g k n
FSTs []       = []
FSTs (t  ts) = FST t  FSTs ts

SNDs :  {g k n}  Vec g k n  Vec g k n
SNDs []       = []
SNDs (t  ts) = SND t  SNDs ts

UPs :  {g k n}  Vec g k n  Vec g (suc k) n
UPs []                       = []
UPs {g} {k} {suc n} (t  ts) = subst (Tm g) (suc-plus k n) (UP t)  UPs ts

DOWNs :  {g k n}  Vec g (suc k) n  Vec g k n
DOWNs []                       = []
DOWNs {g} {k} {suc n} (t  ts) = DOWN (subst (Tm g) (sym (suc-plus k n)) t)  DOWNs ts

--UPs : ∀ {g k n} → Vec g k n → Vec g k n
--UPs []       = []
--UPs (t ∷ ts) = UP t ∷ UPs ts
--
--DOWNs : ∀ {g k n} → Vec g k n → Vec g k n
--DOWNs []       = []
--DOWNs (t ∷ ts) = DOWN t ∷ DOWNs ts

head :  {g k n}  Vec g k (suc n)  Tm g (n + k)
head (t  ts) = t

head-LAMs :  {g k n} (ts : Vec (suc g) k (suc n)) 
              head (LAMs ts)  LAM (head ts)
head-LAMs (t  ts) = refl

head-APPs :  {g k n} (ts₁ ts₂ : Vec g k (suc n)) 
              head (APPs ts₁ ts₂)  APP (head ts₁) (head ts₂)
head-APPs (t₁  ts₁) (t₂  ts₂) = refl

head-PAIRs :  {g k n} (ts₁ ts₂ : Vec g k (suc n)) 
               head (PAIRs ts₁ ts₂)  PAIR (head ts₁) (head ts₂)
head-PAIRs (t₁  ts₁) (t₂  ts₂) = refl

head-FSTs :  {g k n} (ts : Vec g k (suc n)) 
              head (FSTs ts)  FST (head ts)
head-FSTs (t  ts) = refl

head-SNDs :  {g k n} (ts : Vec g k (suc n)) 
              head (SNDs ts)  SND (head ts)
head-SNDs (t  ts) = refl

head-UPs :  {g k n} (ts : Vec g k (suc n)) 
             head (UPs ts)  subst (Tm g) (suc-plus k n) (UP (head ts))
head-UPs (t  ts) = refl

head-DOWNs :  {g k n} (ts : Vec g (suc k) (suc n)) 
               head (DOWNs ts)  DOWN (subst (Tm g) (sym (suc-plus k n)) (head ts))
head-DOWNs (t  ts) = refl

tail :  {g k n}  Vec g k (suc n)  Vec g k n
tail (t  ts) = ts

tail-LAMs :  {g k n} (ts : Vec (suc g) k (suc n)) 
              tail (LAMs ts)  LAMs (tail ts)
tail-LAMs (t  ts) = refl

tail-APPs :  {g k n} (ts₁ ts₂ : Vec g k (suc n)) 
              tail (APPs ts₁ ts₂)  APPs (tail ts₁) (tail ts₂)
tail-APPs (t₁  ts₁) (t₂  ts₂) = refl

tail-PAIRs :  {g k n} (ts₁ ts₂ : Vec g k (suc n)) 
               tail (PAIRs ts₁ ts₂)  PAIRs (tail ts₁) (tail ts₂)
tail-PAIRs (t₁  ts₁) (t₂  ts₂) = refl

tail-FSTs :  {g k n} (ts : Vec g k (suc n)) 
              tail (FSTs ts)  FSTs (tail ts)
tail-FSTs (t  ts) = refl

tail-SNDs :  {g k n} (ts : Vec g k (suc n)) 
              tail (SNDs ts)  SNDs (tail ts)
tail-SNDs (t  ts) = refl

tail-UPs :  {g k n} (ts : Vec g k (suc n)) 
             tail (UPs ts)  UPs (tail ts)
tail-UPs (t  ts) = refl

tail-DOWNs :  {g k n} (ts : Vec g (suc k) (suc n)) 
               tail (DOWNs ts)  DOWNs (tail ts)
tail-DOWNs (t  ts) = refl

ren-vec :  {g g′ k n}  g′  g  Vec g k n  Vec g′ k n
ren-vec h []       = []
ren-vec h (t  ts) = ren-tm h t  ren-vec h ts

wk-vec :  {g k n}  Vec g k n  Vec (suc g) k n
wk-vec = ren-vec ≥wk

wk*-vec :  {g k n}  Vec 0 k n  Vec g k n
wk*-vec = ren-vec ≥to

ren-vec-id :  {g k n} (ts : Vec g k n)  ren-vec ≥id ts  ts
ren-vec-id []       = refl
ren-vec-id (t  ts) = cong₂ _∷_ (ren-tm-id t) (ren-vec-id ts)

ren-vec-○ :  {g g′ g″ k n} (h′ : g″  g′) (h : g′  g) (ts : Vec g k n) 
              ren-vec h′ (ren-vec h ts)  ren-vec (h′  h) ts
ren-vec-○ h′ h []       = refl
ren-vec-○ h′ h (t  ts) = cong₂ _∷_ (ren-tm-○ h′ h t) (ren-vec-○ h′ h ts)

ren-VARs :  {g g′ k n} (h : g′  g) (i : Fin g) 
             ren-vec h (VARs {k = k} {n = n} i)  VARs (ren-fin h i)
ren-VARs {n = zero}  h i = refl
ren-VARs {n = suc n} h i = cong₂ _∷_ refl (ren-VARs h i)

ren-LAMs :  {g g′ k n} (h : g′  g) (ts : Vec (suc g) k n) 
             ren-vec h (LAMs ts)  LAMs (ren-vec (lift h) ts)
ren-LAMs h []       = refl
ren-LAMs h (t  ts) = cong₂ _∷_ refl (ren-LAMs h ts)

ren-APPs :  {g g′ k n} (h : g′  g) (ts₁ ts₂ : Vec g k n) 
            ren-vec h (APPs ts₁ ts₂)  APPs (ren-vec h ts₁) (ren-vec h ts₂)
ren-APPs h []         []         = refl
ren-APPs h (t₁  ts₁) (t₂  ts₂) = cong₂ _∷_ refl (ren-APPs h ts₁ ts₂)

ren-PAIRs :  {g g′ k n} (h : g′  g) (ts₁ ts₂ : Vec g k n) 
              ren-vec h (PAIRs ts₁ ts₂)  PAIRs (ren-vec h ts₁) (ren-vec h ts₂)
ren-PAIRs h []         []         = refl
ren-PAIRs h (t₁  ts₁) (t₂  ts₂) = cong₂ _∷_ refl (ren-PAIRs h ts₁ ts₂)

ren-FSTs :  {g g′ k n} (h : g′  g) (ts : Vec g k n) 
             ren-vec h (FSTs ts)  FSTs (ren-vec h ts)
ren-FSTs h []       = refl
ren-FSTs h (t  ts) = cong₂ _∷_ refl (ren-FSTs h ts)

ren-SNDs :  {g g′ k n} (h : g′  g) (ts : Vec g k n) 
             ren-vec h (SNDs ts)  SNDs (ren-vec h ts)
ren-SNDs h []       = refl
ren-SNDs h (t  ts) = cong₂ _∷_ refl (ren-SNDs h ts)

-- ren-UPs : ∀ {g g′ k n} (h : g′ ≥ g) (ts : Vec g k n) →
--             ren-vec h (UPs ts) ≡ UPs (ren-vec h ts)
-- ren-UPs h []       = refl
-- ren-UPs {k = k} {suc n} h (t ∷ ts) = cong₂ _∷_ {!!} (ren-UPs h ts)

-- ren-DOWNs : ∀ {g g′ k n} (h : g′ ≥ g) (ts : Vec g (suc k) n) →
--               ren-vec h (DOWNs ts) ≡ DOWNs (ren-vec h ts)
-- ren-DOWNs h []     = refl
-- ren-DOWNs {k = k} {suc n} h (t ∷ ts) = cong₂ _∷_ {!!} (ren-DOWNs h ts)

-- -- ren-subst-UP : ∀ {g g′ k n} {h : g′ ≥ g} (t : Tm g (n + k)) →
-- --                  ren-tm h (subst (Tm g) (suc-plus k n) (UP t)) ≡
-- --                  subst (Tm g′) (suc-plus k n) (UP (ren-tm h t))
-- -- ren-subst-UP {k = k} {n = zero}  t = refl
-- -- ren-subst-UP {k = k} {n = suc n} t = {!!}

-- -- ren-subst-DOWN : ∀ {g g′ k n} {h : g′ ≥ g} (t : Tm g (n + suc k)) →
-- --                    DOWN (ren-tm h (subst (Tm g) (sym (suc-plus k n)) t)) ≡
-- --                    DOWN (subst (Tm g′) (sym (suc-plus k n)) (ren-tm h t))
-- -- ren-subst-DOWN {k = k} {n} t rewrite suc-plus (suc k) n = cong DOWN {!!}