{-# OPTIONS --sized-types #-}
module A201605.AbelChapmanExtended2.RenamingLemmas.Semantics where
open import Data.Product using (_,_)
open import Data.Unit using () renaming (tt to unit)
open import Relation.Binary.PropositionalEquality using (sym ; subst)
open import A201605.AbelChapmanExtended.Convergence
open import A201605.AbelChapmanExtended2.Syntax
open import A201605.AbelChapmanExtended2.OPE
open import A201605.AbelChapmanExtended2.Renaming
open import A201605.AbelChapmanExtended2.Normalization
open import A201605.AbelChapmanExtended2.Semantics
open import A201605.AbelChapmanExtended2.RenamingLemmas.OPE
open import A201605.AbelChapmanExtended2.RenamingLemmas.Convergence
ren-V⟦⟧ : ∀ {Δ Δ′} (a : Ty) (η : Δ′ ⊇ Δ) (v : Val Δ a) →
V⟦ a ⟧ v → V⟦ a ⟧ (ren-val η v)
ren-V⟦⟧ ⊥ η (ne v) (v′ , ⇓v′) = (ren-nen η v′ , ⇓ren-readback-ne η v ⇓v′)
ren-V⟦⟧ (a ∨ b) η (ne v) (w , ⇓w) =
let w′ = ren-nen η w
⇓w′ = ⇓ren-readback-ne η v ⇓w
in (w′ , ⇓w′)
ren-V⟦⟧ (a ∨ b) η (inl v) (w , ⇓w , ⟦w⟧) =
let w′ = ren-val η w
⇓w′ = ⇓map (ren-val η) ⇓w
⟦w⟧′ = ren-V⟦⟧ a η w ⟦w⟧
in (w′ , ⇓w′ , ⟦w⟧′)
ren-V⟦⟧ (a ∨ b) η (inr v) (w , ⇓w , ⟦w⟧) =
let w′ = ren-val η w
⇓w′ = ⇓map (ren-val η) ⇓w
⟦w⟧′ = ren-V⟦⟧ b η w ⟦w⟧
in (w′ , ⇓w′ , ⟦w⟧′)
ren-V⟦⟧ (a ⇒ b) η v ⟦v⟧ = λ η′ w ⟦w⟧ →
let (vw , ⇓vw , ⟦vw⟧) = ⟦v⟧ (η′ • η) w ⟦w⟧
⇓vw′ = subst (λ v′ → β-reduce v′ w ⇓ vw)
(sym (ren-val-• η′ η v))
⇓vw
in (vw , ⇓vw′ , ⟦vw⟧)
ren-V⟦⟧ (a ∧ b) η v (c₁ , c₂) =
let (v₁ , ⇓v₁ , ⟦v₁⟧) = c₁
(v₂ , ⇓v₂ , ⟦v₂⟧) = c₂
v₁′ = ren-val η v₁
v₂′ = ren-val η v₂
⇓v₁′ = ⇓ren-π₁-reduce η v ⇓v₁
⇓v₂′ = ⇓ren-π₂-reduce η v ⇓v₂
⟦v₁⟧′ = ren-V⟦⟧ a η v₁ ⟦v₁⟧
⟦v₂⟧′ = ren-V⟦⟧ b η v₂ ⟦v₂⟧
in (v₁′ , ⇓v₁′ , ⟦v₁⟧′) , (v₂′ , ⇓v₂′ , ⟦v₂⟧′)
ren-V⟦⟧ ⊤ η v unit = unit
ren-E⟦⟧ : ∀ {Γ Δ Δ′} (η : Δ′ ⊇ Δ) (ρ : Env Δ Γ) →
E⟦ Γ ⟧ ρ → E⟦ Γ ⟧ (ren-env η ρ)
ren-E⟦⟧ η ∅ unit = unit
ren-E⟦⟧ η (ρ , v) (⟦ρ⟧ , ⟦v⟧) = (ren-E⟦⟧ η ρ ⟦ρ⟧ , ren-V⟦⟧ _ η v ⟦v⟧)