module A201602.Scratch-variables2 where {- {- An extension of reflective λ-calculus ===================================== A work-in-progress implementation of the Alt-Artëmov system λ∞, extended with disjunction and falsehood. For easy editing with Emacs agda-mode, add to your .emacs file: '(agda-input-user-translations (quote (("i" "⊃") ("ii" "⫗") ("e" "⊢") ("ee" "⊩") ("n" "¬") (":." "∵") ("v" "𝑣") ("v2" "𝑣²") ("v3" "𝑣³") ("v4" "𝑣⁴") ("vn" "𝑣ⁿ") ("l" "𝜆") ("l2" "𝜆²") ("l3" "𝜆³") ("l4" "𝜆⁴") ("ln" "𝜆ⁿ") ("o" "∘") ("o2" "∘²") ("o3" "∘³") ("o4" "∘⁴") ("on" "∘ⁿ") ("p" "𝑝") ("p2" "𝑝²") ("p3" "𝑝³") ("p4" "𝑝⁴") ("pn" "𝑝ⁿ") ("pi" "𝜋") ("pi0" "𝜋₀") ("pi02" "𝜋₀²") ("pi03" "𝜋₀³") ("pi04" "𝜋₀⁴") ("pi0n" "𝜋₀ⁿ") ("pi1" "𝜋₁") ("pi12" "𝜋₁²") ("pi13" "𝜋₁³") ("pi14" "𝜋₁⁴") ("pi1n" "𝜋₁ⁿ") ("io" "𝜄") ("io0" "𝜄₀") ("io02" "𝜄₀²") ("io03" "𝜄₀³") ("io04" "𝜄₀⁴") ("io0n" "𝜄₀ⁿ") ("io1" "𝜄₁") ("io12" "𝜄₁²") ("io13" "𝜄₁³") ("io14" "𝜄₁⁴") ("io1n" "𝜄₁ⁿ") ("c" "𝑐") ("c2" "𝑐²") ("c3" "𝑐³") ("c4" "𝑐⁴") ("cn" "𝑐ⁿ") ("u" "⇑") ("u2" "⇑²") ("u3" "⇑³") ("u4" "⇑⁴") ("un" "⇑ⁿ") ("d" "⇓") ("d2" "⇓²") ("d3" "⇓³") ("d4" "⇓⁴") ("dn" "⇓ⁿ") ("x" "☆") ("x2" "☆²") ("x3" "☆³") ("x4" "☆⁴") ("xn" "☆ⁿ") ("b" "□") ("mv" "𝒗") ("mv2" "𝒗²") ("mv3" "𝒗³") ("mv4" "𝒗⁴") ("mvn" "𝒗ⁿ") ("ml" "𝝀") ("ml2" "𝝀²") ("ml3" "𝝀³") ("ml4" "𝝀⁴") ("mln" "𝝀ⁿ") ("mo" "∙") ("mo2" "∙²") ("mo3" "∙³") ("mo4" "∙⁴") ("mon" "∙ⁿ") ("mp" "𝒑") ("mp2" "𝒑²") ("mp3" "𝒑³") ("mp4" "𝒑⁴") ("mpn" "𝒑ⁿ") ("mpi" "𝝅") ("mpi0" "𝝅₀") ("mpi02" "𝝅₀²") ("mpi03" "𝝅₀³") ("mpi04" "𝝅₀⁴") ("mpi0n" "𝝅₀ⁿ") ("mpi1" "𝝅₁") ("mpi12" "𝝅₁²") ("mpi13" "𝝅₁³") ("mpi14" "𝝅₁⁴") ("mpi1n" "𝝅₁ⁿ") ("mi" "𝜾") ("mi0" "𝜾₀") ("mi02" "𝜾₀²") ("mi03" "𝜾₀³") ("mi04" "𝜾₀⁴") ("mi0n" "𝜾₀ⁿ") ("mi1" "𝜾₁") ("mi12" "𝜾₁²") ("mi13" "𝜾₁³") ("mi14" "𝜾₁⁴") ("mi1n" "𝜾₁ⁿ") ("mc" "𝒄") ("mc2" "𝒄²") ("mc3" "𝒄³") ("mc4" "𝒄⁴") ("mcn" "𝒄ⁿ") ("mu" "⬆") ("mu2" "⬆²") ("mu3" "⬆³") ("mu4" "⬆⁴") ("mun" "⬆ⁿ") ("md" "⬇") ("md2" "⬇²") ("md3" "⬇³") ("md4" "⬇⁴") ("mdn" "⬇ⁿ") ("mx" "★") ("mx2" "★²") ("mx3" "★³") ("mx4" "★⁴") ("mxn" "★ⁿ") ("mb" "■") ("mS" "𝐒") ("mZ" "𝐙") ("m0" "𝟎") ("m1" "𝟏") ("m2" "𝟐") ("m3" "𝟑") ("m4" "𝟒") ("ss" "𝐬") ("ts" "𝐭") ("us" "𝐮") ("xs" "𝐱") ("ys" "𝐲") ("zs" "𝐳") ("C" "𝒞") ("D" "𝒟") ("E" "ℰ") ("N" "ℕ")))) -} module Scratch-variables2 where open import Data.Nat using (ℕ ; zero ; suc ; pred ; _⊔_ ) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) infixl 9 !_ infixl 9 𝑣_ 𝑣²_ 𝑣³_ 𝑣⁴_ 𝑣ⁿ_ 𝒗_ 𝒗²_ 𝒗³_ 𝒗⁴_ 𝒗ⁿ_ infixl 9 ☆_ ☆²_ ☆³_ ☆⁴_ ☆ⁿ_ ★_ ★²_ ★³_ ★⁴_ ★ⁿ_ infixl 8 𝜋₀_ 𝜋₀²_ 𝜋₀³_ 𝜋₀⁴_ 𝜋₀ⁿ_ 𝝅₀_ 𝝅₀²_ 𝝅₀³_ 𝝅₀⁴_ 𝝅₀ⁿ_ infixl 8 𝜋₁_ 𝜋₁²_ 𝜋₁³_ 𝜋₁⁴_ 𝜋₁ⁿ_ 𝝅₁_ 𝝅₁²_ 𝝅₁³_ 𝝅₁⁴_ 𝝅₁ⁿ_ infixl 8 𝜄₀_ 𝜄₀²_ 𝜄₀³_ 𝜄₀⁴_ 𝜄₀ⁿ_ 𝜾₀_ 𝜾₀²_ 𝜾₀³_ 𝜾₀⁴_ 𝜾₀ⁿ_ infixl 8 𝜄₁_ 𝜄₁²_ 𝜄₁³_ 𝜄₁⁴_ 𝜄₁ⁿ_ 𝜾₁_ 𝜾₁²_ 𝜾₁³_ 𝜾₁⁴_ 𝜾₁ⁿ_ infixl 7 _∘_ _∘²_ _∘³_ _∘⁴_ _∘ⁿ_ _∙_ _∙²_ _∙³_ _∙⁴_ _∙ⁿ_ infixr 6 ⇑_ ⇑²_ ⇑³_ ⇑⁴_ ⇑ⁿ_ ⬆_ ⬆²_ ⬆³_ ⬆⁴_ ⬆ⁿ_ infixr 6 ⇓_ ⇓²_ ⇓³_ ⇓⁴_ ⇓ⁿ_ ⬇_ ⬇²_ ⬇³_ ⬇⁴_ ⬇ⁿ_ infixr 5 𝜆_ 𝜆²_ 𝜆³_ 𝜆⁴_ 𝜆ⁿ_ 𝝀_ 𝝀²_ 𝝀³_ 𝝀⁴_ 𝝀ⁿ_ infixr 5 _∶_ _∵_ _∷_ infixr 4 ¬_ infixl 4 _∧_ infixl 3 _∨_ _,_ _„_ infixr 2 _⊃_ infixr 1 _⫗_ infixr 0 _[_]⊢_ ⊩_ -- -------------------------------------------------------------------------- -- -- Untyped syntax -- Term constructors with variable count data Tm : ℕ → Set where -- Variable reference at level n 𝑣[_]_ : ℕ → (x : ℕ) → Tm (suc x) -- Abstraction (⊃I) at level n 𝜆[_]_ : ∀{x} → ℕ → Tm x → Tm (pred x) -- Application (⊃E) at level n _∘[_]_ : ∀{x y} → Tm x → ℕ → Tm y → Tm (x ⊔ y) -- Pair (∧I) at level n 𝑝[_]⟨_,_⟩ : ∀{x y} → ℕ → Tm x → Tm y → Tm (x ⊔ y) -- 0th projection (∧E₀) at level n 𝜋₀[_]_ : ∀{x} → ℕ → Tm x → Tm x -- 1st projection (∧E₁) at level n 𝜋₁[_]_ : ∀{x} → ℕ → Tm x → Tm x -- 0th injection (∨I₀) at level n 𝜄₀[_]_ : ∀{x} → ℕ → Tm x → Tm x -- 1st injection (∨I₁) at level n 𝜄₁[_]_ : ∀{x} → ℕ → Tm x → Tm x -- Case split (∨E) at level n 𝑐[_][_▷_∣_] : ∀{x y z} → ℕ → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z) -- Artëmov’s “proof checker” !_ : ∀{x} → Tm x → Tm x -- Reification at level n ⇑[_]_ : ∀{x} → ℕ → Tm x → Tm x -- Reflection at level n ⇓[_]_ : ∀{x} → ℕ → Tm x → Tm x -- Explosion (⊥E) at level n ☆[_]_ : ∀{x} → ℕ → Tm x → Tm x -- Type constructors data Ty : Set where -- Implication _⊃_ : Ty → Ty → Ty -- Conjunction _∧_ : Ty → Ty → Ty -- Disjunction _∨_ : Ty → Ty → Ty -- Explicit provability _∶_ : ∀{x} → Tm x → Ty → Ty -- Falsehood ⊥ : Ty -- -------------------------------------------------------------------------- -- -- Example types -- Truth ⊤ : Ty ⊤ = ⊥ ⊃ ⊥ -- Negation ¬_ : Ty → Ty ¬ A = A ⊃ ⊥ -- Equivalence _⫗_ : Ty → Ty → Ty A ⫗ B = (A ⊃ B) ∧ (B ⊃ A) -- -------------------------------------------------------------------------- -- -- Notation for term constructors at level 1 𝑣_ : (x : ℕ) → Tm (suc x) 𝑣 x = 𝑣[ 1 ] x 𝜆_ : ∀{x} → Tm x → Tm (pred x) 𝜆 t = 𝜆[ 1 ] t _∘_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) t ∘ s = t ∘[ 1 ] s 𝑝⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) 𝑝⟨ t , s ⟩ = 𝑝[ 1 ]⟨ t , s ⟩ 𝜋₀_ : ∀{x} → Tm x → Tm x 𝜋₀ t = 𝜋₀[ 1 ] t 𝜋₁_ : ∀{x} → Tm x → Tm x 𝜋₁ t = 𝜋₁[ 1 ] t 𝜄₀_ : ∀{x} → Tm x → Tm x 𝜄₀ t = 𝜄₀[ 1 ] t 𝜄₁_ : ∀{x} → Tm x → Tm x 𝜄₁ t = 𝜄₁[ 1 ] t 𝑐[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z) 𝑐[ t ▷ s ∣ r ] = 𝑐[ 1 ][ t ▷ s ∣ r ] ⇑_ : ∀{x} → Tm x → Tm x ⇑ t = ⇑[ 1 ] t ⇓_ : ∀{x} → Tm x → Tm x ⇓ t = ⇓[ 1 ] t ☆_ : ∀{x} → Tm x → Tm x ☆ t = ☆[ 1 ] t -- -------------------------------------------------------------------------- -- -- Notation for term constructors at level 2 𝑣²_ : (x : ℕ) → Tm (suc x) 𝑣² x = 𝑣[ 2 ] x 𝜆²_ : ∀{x} → Tm x → Tm (pred x) 𝜆² t₂ = 𝜆[ 2 ] t₂ _∘²_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) t₂ ∘² s₂ = t₂ ∘[ 2 ] s₂ 𝑝²⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) 𝑝²⟨ t₂ , s₂ ⟩ = 𝑝[ 2 ]⟨ t₂ , s₂ ⟩ 𝜋₀²_ : ∀{x} → Tm x → Tm x 𝜋₀² t₂ = 𝜋₀[ 2 ] t₂ 𝜋₁²_ : ∀{x} → Tm x → Tm x 𝜋₁² t₂ = 𝜋₁[ 2 ] t₂ 𝜄₀²_ : ∀{x} → Tm x → Tm x 𝜄₀² t₂ = 𝜄₀[ 2 ] t₂ 𝜄₁²_ : ∀{x} → Tm x → Tm x 𝜄₁² t₂ = 𝜄₁[ 2 ] t₂ 𝑐²[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z) 𝑐²[ t₂ ▷ s₂ ∣ r₂ ] = 𝑐[ 2 ][ t₂ ▷ s₂ ∣ r₂ ] ⇑²_ : ∀{x} → Tm x → Tm x ⇑² t₂ = ⇑[ 2 ] t₂ ⇓²_ : ∀{x} → Tm x → Tm x ⇓² t₂ = ⇓[ 2 ] t₂ ☆²_ : ∀{x} → Tm x → Tm x ☆² t = ☆[ 2 ] t -- -------------------------------------------------------------------------- -- -- Notation for term constructors at level 3 𝑣³_ : (x : ℕ) → Tm (suc x) 𝑣³ x = 𝑣[ 3 ] x 𝜆³_ : ∀{x} → Tm x → Tm (pred x) 𝜆³ t₃ = 𝜆[ 3 ] t₃ _∘³_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) t₃ ∘³ s₃ = t₃ ∘[ 3 ] s₃ 𝑝³⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) 𝑝³⟨ t₃ , s₃ ⟩ = 𝑝[ 3 ]⟨ t₃ , s₃ ⟩ 𝜋₀³_ : ∀{x} → Tm x → Tm x 𝜋₀³ t₃ = 𝜋₀[ 3 ] t₃ 𝜋₁³_ : ∀{x} → Tm x → Tm x 𝜋₁³ t₃ = 𝜋₁[ 3 ] t₃ 𝜄₀³_ : ∀{x} → Tm x → Tm x 𝜄₀³ t₃ = 𝜄₀[ 3 ] t₃ 𝜄₁³_ : ∀{x} → Tm x → Tm x 𝜄₁³ t₃ = 𝜄₁[ 3 ] t₃ 𝑐³[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z) 𝑐³[ t₃ ▷ s₃ ∣ r₃ ] = 𝑐[ 3 ][ t₃ ▷ s₃ ∣ r₃ ] ⇑³_ : ∀{x} → Tm x → Tm x ⇑³ t₃ = ⇑[ 3 ] t₃ ⇓³_ : ∀{x} → Tm x → Tm x ⇓³ t₃ = ⇓[ 3 ] t₃ ☆³_ : ∀{x} → Tm x → Tm x ☆³ t = ☆[ 3 ] t -- -------------------------------------------------------------------------- -- -- Notation for term constructors at level 4 𝑣⁴_ : (x : ℕ) → Tm (suc x) 𝑣⁴ x = 𝑣[ 4 ] x 𝜆⁴_ : ∀{x} → Tm x → Tm (pred x) 𝜆⁴ t₄ = 𝜆[ 4 ] t₄ _∘⁴_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) t₄ ∘⁴ s₄ = t₄ ∘[ 4 ] s₄ 𝑝⁴⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y) 𝑝⁴⟨ t₄ , s₄ ⟩ = 𝑝[ 4 ]⟨ t₄ , s₄ ⟩ 𝜋₀⁴_ : ∀{x} → Tm x → Tm x 𝜋₀⁴ t₄ = 𝜋₀[ 4 ] t₄ 𝜋₁⁴_ : ∀{x} → Tm x → Tm x 𝜋₁⁴ t₄ = 𝜋₁[ 4 ] t₄ 𝜄₀⁴_ : ∀{x} → Tm x → Tm x 𝜄₀⁴ t₄ = 𝜄₀[ 4 ] t₄ 𝜄₁⁴_ : ∀{x} → Tm x → Tm x 𝜄₁⁴ t₄ = 𝜄₁[ 4 ] t₄ 𝑐⁴[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z) 𝑐⁴[ t₄ ▷ s₄ ∣ r₄ ] = 𝑐[ 4 ][ t₄ ▷ s₄ ∣ r₄ ] ⇑⁴_ : ∀{x} → Tm x → Tm x ⇑⁴ t₄ = ⇑[ 4 ] t₄ ⇓⁴_ : ∀{x} → Tm x → Tm x ⇓⁴ t₄ = ⇓[ 4 ] t₄ ☆⁴_ : ∀{x} → Tm x → Tm x ☆⁴ t = ☆[ 4 ] t -- -------------------------------------------------------------------------- -- -- Example closed and open untyped terms module Untyped where ′I : Tm 0 ′I = 𝜆 𝜆 𝑣 0 I : Tm 0 I = 𝜆 𝑣 0 I′ : Tm 1 I′ = 𝑣 0 ′K : Tm 0 ′K = 𝜆 𝜆 𝜆 𝑣 1 K : Tm 0 K = 𝜆 𝜆 𝑣 1 K′ : Tm 1 K′ = 𝜆 𝑣 1 K″ : Tm 2 K″ = 𝑣 1 -- -------------------------------------------------------------------------- -- -- Vector notation for type assertions at level n (p. 27 [1]) -- Term vectors with length and variable count data Tms : ℕ → ℕ → Set where [] : ∀{x} → Tms 0 x _∷_ : ∀{n x} → Tm x → Tms n x → Tms (suc n) x -- tₙ ∶ tₙ₋₁ ∶ … ∶ t ∶ A _∵_ : ∀{n x} → Tms n x → Ty → Ty [] ∵ A = A (t ∷ 𝐭) ∵ A = t ∶ 𝐭 ∵ A -- 𝑣ⁿ x ∶ 𝑣ⁿ⁻¹ x ∶ … ∶ 𝑣 x 𝑣ⁿ_ : ∀{n} → (x : ℕ) → Tms n (suc x) 𝑣ⁿ_ {zero} x = [] 𝑣ⁿ_ {suc n} x = 𝑣[ suc n ] x ∷ 𝑣ⁿ x -- 𝜆ⁿ tₙ ∶ 𝜆ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜆 t 𝜆ⁿ_ : ∀{n x} → Tms n x → Tms n (pred x) 𝜆ⁿ_ {zero} [] = [] 𝜆ⁿ_ {suc n} (t ∷ 𝐭) = 𝜆[ suc n ] t ∷ 𝜆ⁿ 𝐭 -- tₙ ∘ⁿ sₙ ∶ tₙ₋₁ ∘ⁿ⁻¹ ∶ sₙ₋₁ ∶ … ∶ t ∘ s _∘ⁿ_ : ∀{n x y} → Tms n x → Tms n y → Tms n (x ⊔ y) _∘ⁿ_ {zero} [] [] = [] _∘ⁿ_ {suc n} (t ∷ 𝐭) (s ∷ 𝐬) = t ∘[ suc n ] s ∷ 𝐭 ∘ⁿ 𝐬 -- 𝑝ⁿ⟨ tₙ , sₙ ⟩ ∶ 𝑝ⁿ⁻¹⟨ tₙ₋₁ , sₙ₋₁ ⟩ ∶ … ∶ p⟨ t , s ⟩ 𝑝ⁿ⟨_,_⟩ : ∀{n x y} → Tms n x → Tms n y → Tms n (x ⊔ y) 𝑝ⁿ⟨_,_⟩ {zero} [] [] = [] 𝑝ⁿ⟨_,_⟩ {suc n} (t ∷ 𝐭) (s ∷ 𝐬) = 𝑝[ suc n ]⟨ t , s ⟩ ∷ 𝑝ⁿ⟨ 𝐭 , 𝐬 ⟩ -- 𝜋₀ⁿ tₙ ∶ 𝜋₀ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜋₀ t 𝜋₀ⁿ_ : ∀{n x} → Tms n x → Tms n x 𝜋₀ⁿ_ {zero} [] = [] 𝜋₀ⁿ_ {suc n} (t ∷ 𝐭) = 𝜋₀[ suc n ] t ∷ 𝜋₀ⁿ 𝐭 -- 𝜋₁ⁿ tₙ ∶ 𝜋₁ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜋₁ t 𝜋₁ⁿ_ : ∀{n x} → Tms n x → Tms n x 𝜋₁ⁿ_ {zero} [] = [] 𝜋₁ⁿ_ {suc n} (t ∷ 𝐭) = 𝜋₁[ suc n ] t ∷ 𝜋₁ⁿ 𝐭 -- 𝜄₀ⁿ tₙ ∶ 𝜄₀ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜄₀ t 𝜄₀ⁿ_ : ∀{n x} → Tms n x → Tms n x 𝜄₀ⁿ_ {zero} [] = [] 𝜄₀ⁿ_ {suc n} (t ∷ 𝐭) = 𝜄₀[ suc n ] t ∷ 𝜄₀ⁿ 𝐭 -- 𝜄₁ⁿ tₙ ∶ 𝜄₁ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜄₁ t 𝜄₁ⁿ_ : ∀{n x} → Tms n x → Tms n x 𝜄₁ⁿ_ {zero} [] = [] 𝜄₁ⁿ_ {suc n} (t ∷ 𝐭) = 𝜄₁[ suc n ] t ∷ 𝜄₁ⁿ 𝐭 -- 𝑐ⁿ[ tₙ ▷ sₙ ∣ rₙ ] ∶ 𝑐ⁿ⁻¹[ tₙ₋₁ ▷ sₙ₋₁ ∣ rₙ₋₁ ] ∶ … ∶ 𝑐[ t ▷ s ∣ r ] 𝑐ⁿ[_▷_∣_] : ∀{n x y z} → Tms n x → Tms n y → Tms n z → Tms n (x ⊔ pred y ⊔ pred z) 𝑐ⁿ[_▷_∣_] {zero} [] [] [] = [] 𝑐ⁿ[_▷_∣_] {suc n} (t ∷ 𝐭) (s ∷ 𝐬) (u ∷ 𝐮) = 𝑐[ suc n ][ t ▷ s ∣ u ] ∷ 𝑐ⁿ[ 𝐭 ▷ 𝐬 ∣ 𝐮 ] -- ⇑ⁿ tₙ ∶ ⇑ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ⇑ t ⇑ⁿ_ : ∀{n x} → Tms n x → Tms n x ⇑ⁿ_ {zero} [] = [] ⇑ⁿ_ {suc n} (t ∷ 𝐭) = ⇑[ suc n ] t ∷ ⇑ⁿ 𝐭 -- ⇓ⁿ tₙ ∶ ⇑ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ⇑ t ⇓ⁿ_ : ∀{n x} → Tms n x → Tms n x ⇓ⁿ_ {zero} [] = [] ⇓ⁿ_ {suc n} (t ∷ 𝐭) = ⇓[ suc n ] t ∷ ⇓ⁿ 𝐭 -- ☆ⁿ tₙ ∶ ☆ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ☆ t ☆ⁿ_ : ∀{n x} → Tms n x → Tms n x ☆ⁿ_ {zero} [] = [] ☆ⁿ_ {suc n} (t ∷ 𝐭) = ☆[ suc n ] t ∷ ☆ⁿ 𝐭 -- -------------------------------------------------------------------------- -- -- Typed syntax -- Hypotheses Hyp : Set Hyp = ℕ × Ty -- Contexts data Cx : Set where ∅ : Cx _,_ : Cx → Hyp → Cx _„_ : Cx → Cx → Cx Γ „ ∅ = Γ Γ „ (Δ , A) = Γ „ Δ , A -- Context membership evidence data _∈[_]_ : Hyp → ℕ → Cx → Set where 𝐙 : ∀{A Γ} → A ∈[ zero ] (Γ , A) 𝐒_ : ∀{x A B Γ} → A ∈[ x ] Γ → A ∈[ suc x ] (Γ , B) -- Typed terms with variable count data _[_]⊢_ (Γ : Cx) : ℕ → Ty → Set where -- Variable reference 𝒗ⁿ_ : ∀{n x A} → ⟨ n , A ⟩ ∈[ x ] Γ → Γ [ suc x ]⊢ 𝑣ⁿ_ {n} x ∵ A -- Abstraction (⊃I) at level n 𝝀ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B} → Γ , ⟨ n , A ⟩ [ x ]⊢ 𝐭 ∵ B → Γ [ pred x ]⊢ 𝜆ⁿ 𝐭 ∵ (A ⊃ B) -- Application (⊃E) at level n _∙ⁿ_ : ∀{n x y} {𝐭 : Tms n x} {𝐬 : Tms n y} {A B} → Γ [ x ]⊢ 𝐭 ∵ (A ⊃ B) → Γ [ y ]⊢ 𝐬 ∵ A → Γ [ x ⊔ y ]⊢ 𝐭 ∘ⁿ 𝐬 ∵ B -- Pair (∧I) at level n 𝒑ⁿ⟨_,_⟩ : ∀{n x y} {𝐭 : Tms n x} {𝐬 : Tms n y} {A B} → Γ [ x ]⊢ 𝐭 ∵ A → Γ [ y ]⊢ 𝐬 ∵ B → Γ [ x ⊔ y ]⊢ 𝑝ⁿ⟨ 𝐭 , 𝐬 ⟩ ∵ (A ∧ B) -- 0th projection (∧E₀) at level n 𝝅₀ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B} → Γ [ x ]⊢ 𝐭 ∵ (A ∧ B) → Γ [ x ]⊢ 𝜋₀ⁿ 𝐭 ∵ A -- 1st projection (∧E₁) at level n 𝝅₁ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B} → Γ [ x ]⊢ 𝐭 ∵ (A ∧ B) → Γ [ x ]⊢ 𝜋₁ⁿ 𝐭 ∵ B -- 0th injection (∨I₀) at level n 𝜾₀ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B} → Γ [ x ]⊢ 𝐭 ∵ A → Γ [ x ]⊢ 𝜄₀ⁿ 𝐭 ∵ (A ∨ B) -- 1st injection (∨I₁) at level n 𝜾₁ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B} → Γ [ x ]⊢ 𝐭 ∵ B → Γ [ x ]⊢ 𝜄₁ⁿ 𝐭 ∵ (A ∨ B) -- Case split (∨E) at level n 𝒄ⁿ[_▷_∣_] : ∀{n x y z} {𝐭 : Tms n x} {𝐬 : Tms n y} {𝐮 : Tms n z} {A B C} → Γ [ x ]⊢ 𝐭 ∵ (A ∨ B) → Γ , ⟨ n , A ⟩ [ y ]⊢ 𝐬 ∵ C → Γ , ⟨ n , B ⟩ [ z ]⊢ 𝐮 ∵ C → Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐ⁿ[ 𝐭 ▷ 𝐬 ∣ 𝐮 ] ∵ C -- Reification at level n ⬆ⁿ_ : ∀{n x} {𝐭 : Tms n x} {u : Tm x} {A} → Γ [ x ]⊢ 𝐭 ∵ (u ∶ A) → Γ [ x ]⊢ ⇑ⁿ 𝐭 ∵ (! u ∶ u ∶ A) -- Reflection at level n ⬇ⁿ_ : ∀{n x} {𝐭 : Tms n x} {u : Tm x} {A} → Γ [ x ]⊢ 𝐭 ∵ (u ∶ A) → Γ [ x ]⊢ ⇓ⁿ 𝐭 ∵ A -- Explosion (⊥E) ★ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A} → Γ [ x ]⊢ 𝐭 ∵ ⊥ → Γ [ x ]⊢ ☆ⁿ 𝐭 ∵ A -- Closed typed terms ⊩_ : Ty → Set ⊩ A = ∀{Γ} → Γ [ 0 ]⊢ A -- -------------------------------------------------------------------------- -- -- Notation for context membership evidence 𝟎 : ∀{A Γ} → A ∈[ 0 ] (Γ , A) 𝟎 = 𝐙 𝟏 : ∀{A B Γ} → A ∈[ 1 ] (Γ , A , B) 𝟏 = 𝐒 𝟎 𝟐 : ∀{A B C Γ} → A ∈[ 2 ] (Γ , A , B , C) 𝟐 = 𝐒 𝟏 𝟑 : ∀{A B C D Γ} → A ∈[ 3 ] (Γ , A , B , C , D) 𝟑 = 𝐒 𝟐 𝟒 : ∀{A B C D E Γ} → A ∈[ 4 ] (Γ , A , B , C , D , E) 𝟒 = 𝐒 𝟑 -- -------------------------------------------------------------------------- -- -- Notation for typed terms at level 1 𝒗_ : ∀{x A Γ} → ⟨ 0 , A ⟩ ∈[ x ] Γ → Γ [ suc x ]⊢ A 𝒗_ = 𝒗ⁿ_ 𝝀_ : ∀{x A B Γ} → Γ , ⟨ 0 , A ⟩ [ x ]⊢ B → Γ [ pred x ]⊢ A ⊃ B 𝝀_ {x} = 𝝀ⁿ_ {x = x} {𝐭 = []} _∙_ : ∀{x y A B Γ} → Γ [ x ]⊢ A ⊃ B → Γ [ y ]⊢ A → Γ [ x ⊔ y ]⊢ B _∙_ {x} {y} = _∙ⁿ_ {x = x} {y = y} {𝐭 = []} {𝐬 = []} 𝒑⟨_,_⟩ : ∀{x y A B Γ} → Γ [ x ]⊢ A → Γ [ y ]⊢ B → Γ [ x ⊔ y ]⊢ A ∧ B 𝒑⟨_,_⟩ {x} {y} = 𝒑ⁿ⟨_,_⟩ {x = x} {y = y} {𝐭 = []} {𝐬 = []} 𝝅₀_ : ∀{x A B Γ} → Γ [ x ]⊢ A ∧ B → Γ [ x ]⊢ A 𝝅₀_ {x} = 𝝅₀ⁿ_ {x = x} {𝐭 = []} 𝝅₁_ : ∀{x A B Γ} → Γ [ x ]⊢ A ∧ B → Γ [ x ]⊢ B 𝝅₁_ {x} = 𝝅₁ⁿ_ {x = x} {𝐭 = []} 𝜾₀_ : ∀{x A B Γ} → Γ [ x ]⊢ A → Γ [ x ]⊢ A ∨ B 𝜾₀_ {x} = 𝜾₀ⁿ_ {x = x} {𝐭 = []} 𝜾₁_ : ∀{x A B Γ} → Γ [ x ]⊢ B → Γ [ x ]⊢ A ∨ B 𝜾₁_ {x} = 𝜾₁ⁿ_ {x = x} {𝐭 = []} 𝒄[_▷_∣_] : ∀{x y z A B C Γ} → Γ [ x ]⊢ A ∨ B → Γ , ⟨ 0 , A ⟩ [ y ]⊢ C → Γ , ⟨ 0 , B ⟩ [ z ]⊢ C → Γ [ x ⊔ pred y ⊔ pred z ]⊢ C 𝒄[_▷_∣_] {x} {y} {z} = 𝒄ⁿ[_▷_∣_] {x = x} {y = y} {z = z} {𝐭 = []} {𝐬 = []} {𝐮 = []} ⬆_ : ∀{x} {u : Tm x} {A Γ} → Γ [ x ]⊢ u ∶ A → Γ [ x ]⊢ ! u ∶ u ∶ A ⬆_ {x} = ⬆ⁿ_ {x = x} {𝐭 = []} ⬇_ : ∀{x} {u : Tm x} {A Γ} → Γ [ x ]⊢ u ∶ A → Γ [ x ]⊢ A ⬇_ {x} = ⬇ⁿ_ {x = x} {𝐭 = []} ★_ : ∀{x A Γ} → Γ [ x ]⊢ ⊥ → Γ [ x ]⊢ A ★_ {x} = ★ⁿ_ {x = x} {𝐭 = []} -- -------------------------------------------------------------------------- -- -- Notation for typed terms at level 2 𝒗²_ : ∀{x A Γ} → ⟨ 1 , A ⟩ ∈[ x ] Γ → Γ [ suc x ]⊢ 𝑣 x ∶ A 𝒗²_ = 𝒗ⁿ_ 𝝀²_ : ∀{x} {t : Tm x} {A B Γ} → Γ , ⟨ 1 , A ⟩ [ x ]⊢ t ∶ B → Γ [ pred x ]⊢ 𝜆 t ∶ (A ⊃ B) 𝝀²_ {t = t} = 𝝀ⁿ_ {𝐭 = t ∷ []} _∙²_ : ∀{x y} {t : Tm x} {s : Tm y} {A B Γ} → Γ [ x ]⊢ t ∶ (A ⊃ B) → Γ [ y ]⊢ s ∶ A → Γ [ x ⊔ y ]⊢ t ∘ s ∶ B _∙²_ {t = t} {s} = _∙ⁿ_ {𝐭 = t ∷ []} {𝐬 = s ∷ []} 𝒑²⟨_,_⟩ : ∀{x y} {t : Tm x} {s : Tm y} {A B Γ} → Γ [ x ]⊢ t ∶ A → Γ [ y ]⊢ s ∶ B → Γ [ x ⊔ y ]⊢ 𝑝⟨ t , s ⟩ ∶ (A ∧ B) 𝒑²⟨_,_⟩ {t = t} {s} = 𝒑ⁿ⟨_,_⟩ {𝐭 = t ∷ []} {𝐬 = s ∷ []} 𝝅₀²_ : ∀{x} {t : Tm x} {A B Γ} → Γ [ x ]⊢ t ∶ (A ∧ B) → Γ [ x ]⊢ 𝜋₀ t ∶ A 𝝅₀²_ {t = t} = 𝝅₀ⁿ_ {𝐭 = t ∷ []} 𝝅₁²_ : ∀{x} {t : Tm x} {A B Γ} → Γ [ x ]⊢ t ∶ (A ∧ B) → Γ [ x ]⊢ 𝜋₁ t ∶ B 𝝅₁²_ {t = t} = 𝝅₁ⁿ_ {𝐭 = t ∷ []} 𝜾₀²_ : ∀{x} {t : Tm x} {A B Γ} → Γ [ x ]⊢ t ∶ A → Γ [ x ]⊢ 𝜄₀ t ∶ (A ∨ B) 𝜾₀²_ {t = t} = 𝜾₀ⁿ_ {𝐭 = t ∷ []} 𝜾₁²_ : ∀{x} {t : Tm x} {A B Γ} → Γ [ x ]⊢ t ∶ B → Γ [ x ]⊢ 𝜄₁ t ∶ (A ∨ B) 𝜾₁²_ {t = t} = 𝜾₁ⁿ_ {𝐭 = t ∷ []} 𝒄²[_▷_∣_] : ∀{x y z} {t : Tm x} {s : Tm y} {u : Tm z} {A B C Γ} → Γ [ x ]⊢ t ∶ (A ∨ B) → Γ , ⟨ 1 , A ⟩ [ y ]⊢ s ∶ C → Γ , ⟨ 1 , B ⟩ [ z ]⊢ u ∶ C → Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐[ t ▷ s ∣ u ] ∶ C 𝒄²[_▷_∣_] {t = t} {s} {u} = 𝒄ⁿ[_▷_∣_] {𝐭 = t ∷ []} {𝐬 = s ∷ []} {𝐮 = u ∷ []} ⬆²_ : ∀{x} {t : Tm x} {u : Tm x} {A Γ} → Γ [ x ]⊢ t ∶ u ∶ A → Γ [ x ]⊢ ⇑ t ∶ ! u ∶ u ∶ A ⬆²_ {t = t} {u} = ⬆ⁿ_ {𝐭 = t ∷ []} ⬇²_ : ∀{x} {t : Tm x} {u : Tm x} {A Γ} → Γ [ x ]⊢ t ∶ u ∶ A → Γ [ x ]⊢ ⇓ t ∶ A ⬇²_ {t = t} {u} = ⬇ⁿ_ {𝐭 = t ∷ []} ★²_ : ∀{x} {t : Tm x} {A Γ} → Γ [ x ]⊢ t ∶ ⊥ → Γ [ x ]⊢ ☆ t ∶ A ★²_ {t = t} = ★ⁿ_ {𝐭 = t ∷ []} -- -------------------------------------------------------------------------- -- -- Notation for typed terms at level 3 𝒗³_ : ∀{x A Γ} → ⟨ 2 , A ⟩ ∈[ x ] Γ → Γ [ suc x ]⊢ 𝑣² x ∶ 𝑣 x ∶ A 𝒗³_ = 𝒗ⁿ_ 𝝀³_ : ∀{x} {t₂ t : Tm x} {A B Γ} → Γ , ⟨ 2 , A ⟩ [ x ]⊢ t₂ ∶ t ∶ B → Γ [ pred x ]⊢ 𝜆² t₂ ∶ 𝜆 t ∶ (A ⊃ B) 𝝀³_ {t₂ = t₂} {t} = 𝝀ⁿ_ {𝐭 = t₂ ∷ t ∷ []} _∙³_ : ∀{x y} {t₂ t : Tm x} {s₂ s : Tm y} {A B Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ (A ⊃ B) → Γ [ y ]⊢ s₂ ∶ s ∶ A → Γ [ x ⊔ y ]⊢ t₂ ∘² s₂ ∶ t ∘ s ∶ B _∙³_ {t₂ = t₂} {t} {s₂} {s} = _∙ⁿ_ {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []} 𝒑³⟨_,_⟩ : ∀{x y} {t₂ t : Tm x} {s₂ s : Tm y} {A B Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ A → Γ [ y ]⊢ s₂ ∶ s ∶ B → Γ [ x ⊔ y ]⊢ 𝑝²⟨ t₂ , s₂ ⟩ ∶ 𝑝⟨ t , s ⟩ ∶ (A ∧ B) 𝒑³⟨_,_⟩ {t₂ = t₂} {t} {s₂} {s} = 𝒑ⁿ⟨_,_⟩ {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []} 𝝅₀³_ : ∀{x} {t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ (A ∧ B) → Γ [ x ]⊢ 𝜋₀² t₂ ∶ 𝜋₀ t ∶ A 𝝅₀³_ {t₂ = t₂} {t} = 𝝅₀ⁿ_ {𝐭 = t₂ ∷ t ∷ []} 𝝅₁³_ : ∀{x} {t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ (A ∧ B) → Γ [ x ]⊢ 𝜋₁² t₂ ∶ 𝜋₁ t ∶ B 𝝅₁³_ {t₂ = t₂} {t} = 𝝅₁ⁿ_ {𝐭 = t₂ ∷ t ∷ []} 𝜾₀³_ : ∀{x} {t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ A → Γ [ x ]⊢ 𝜄₀² t₂ ∶ 𝜄₀ t ∶ (A ∨ B) 𝜾₀³_ {t₂ = t₂} {t} = 𝜾₀ⁿ_ {𝐭 = t₂ ∷ t ∷ []} 𝜾₁³_ : ∀{x} {t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ B → Γ [ x ]⊢ 𝜄₁² t₂ ∶ 𝜄₁ t ∶ (A ∨ B) 𝜾₁³_ {t₂ = t₂} {t} = 𝜾₁ⁿ_ {𝐭 = t₂ ∷ t ∷ []} 𝒄³[_▷_∣_] : ∀{x y z} {t₂ t : Tm x} {s₂ s : Tm y} {u₂ u : Tm z} {A B C Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ (A ∨ B) → Γ , ⟨ 2 , A ⟩ [ y ]⊢ s₂ ∶ s ∶ C → Γ , ⟨ 2 , B ⟩ [ z ]⊢ u₂ ∶ u ∶ C → Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐²[ t₂ ▷ s₂ ∣ u₂ ] ∶ 𝑐[ t ▷ s ∣ u ] ∶ C 𝒄³[_▷_∣_] {t₂ = t₂} {t} {s₂} {s} {u₂} {u} = 𝒄ⁿ[_▷_∣_] {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []} {𝐮 = u₂ ∷ u ∷ []} ⬆³_ : ∀{x} {t₂ t : Tm x} {u : Tm x} {A Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ u ∶ A → Γ [ x ]⊢ ⇑² t₂ ∶ ⇑ t ∶ ! u ∶ u ∶ A ⬆³_ {t₂ = t₂} {t} = ⬆ⁿ_ {𝐭 = t₂ ∷ t ∷ []} ⬇³_ : ∀{x} {t₂ t : Tm x} {u : Tm x} {A Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ u ∶ A → Γ [ x ]⊢ ⇓² t₂ ∶ ⇓ t ∶ A ⬇³_ {t₂ = t₂} {t} = ⬇ⁿ_ {𝐭 = t₂ ∷ t ∷ []} ★³_ : ∀{x} {t₂ t : Tm x} {A Γ} → Γ [ x ]⊢ t₂ ∶ t ∶ ⊥ → Γ [ x ]⊢ ☆² t₂ ∶ ☆ t ∶ A ★³_ {t₂ = t₂} {t} = ★ⁿ_ {𝐭 = t₂ ∷ t ∷ []} -- -------------------------------------------------------------------------- -- -- Notation for typed terms at level 4 𝒗⁴_ : ∀{x A Γ} → ⟨ 3 , A ⟩ ∈[ x ] Γ → Γ [ suc x ]⊢ 𝑣³ x ∶ 𝑣² x ∶ 𝑣 x ∶ A 𝒗⁴_ = 𝒗ⁿ_ 𝝀⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ} → Γ , ⟨ 3 , A ⟩ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ B → Γ [ pred x ]⊢ 𝜆³ t₃ ∶ 𝜆² t₂ ∶ 𝜆 t ∶ (A ⊃ B) 𝝀⁴_ {t₃ = t₃} {t₂} {t} = 𝝀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} _∙⁴_ : ∀{x y} {t₃ t₂ t : Tm x} {s₃ s₂ s : Tm y} {A B Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ⊃ B) → Γ [ y ]⊢ s₃ ∶ s₂ ∶ s ∶ A → Γ [ x ⊔ y ]⊢ t₃ ∘³ s₃ ∶ t₂ ∘² s₂ ∶ t ∘ s ∶ B _∙⁴_ {t₃ = t₃} {t₂} {t} {s₃} {s₂} {s} = _∙ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []} 𝒑⁴⟨_,_⟩ : ∀{x y} {t₃ t₂ t : Tm x} {s₃ s₂ s : Tm y} {A B Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ A → Γ [ y ]⊢ s₃ ∶ s₂ ∶ s ∶ B → Γ [ x ⊔ y ]⊢ 𝑝³⟨ t₃ , s₃ ⟩ ∶ 𝑝²⟨ t₂ , s₂ ⟩ ∶ 𝑝⟨ t , s ⟩ ∶ (A ∧ B) 𝒑⁴⟨_,_⟩ {t₃ = t₃} {t₂} {t} {s₃} {s₂} {s} = 𝒑ⁿ⟨_,_⟩ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []} 𝝅₀⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ∧ B) → Γ [ x ]⊢ 𝜋₀³ t₃ ∶ 𝜋₀² t₂ ∶ 𝜋₀ t ∶ A 𝝅₀⁴_ {t₃ = t₃} {t₂} {t} = 𝝅₀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} 𝝅₁⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ∧ B) → Γ [ x ]⊢ 𝜋₁³ t₃ ∶ 𝜋₁² t₂ ∶ 𝜋₁ t ∶ B 𝝅₁⁴_ {t₃ = t₃} {t₂} {t} = 𝝅₁ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} 𝜾₀⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ A → Γ [ x ]⊢ 𝜄₀³ t₃ ∶ 𝜄₀² t₂ ∶ 𝜄₀ t ∶ (A ∨ B) 𝜾₀⁴_ {t₃ = t₃} {t₂} {t} = 𝜾₀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} 𝜾₁⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ B → Γ [ x ]⊢ 𝜄₁³ t₃ ∶ 𝜄₁² t₂ ∶ 𝜄₁ t ∶ (A ∨ B) 𝜾₁⁴_ {t₃ = t₃} {t₂} {t} = 𝜾₁ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} 𝒄⁴[_▷_∣_] : ∀{x y z} {t₃ t₂ t : Tm x} {s₃ s₂ s : Tm y} {u₃ u₂ u : Tm z} {A B C Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ∨ B) → Γ , ⟨ 3 , A ⟩ [ y ]⊢ s₃ ∶ s₂ ∶ s ∶ C → Γ , ⟨ 3 , B ⟩ [ z ]⊢ u₃ ∶ u₂ ∶ u ∶ C → Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐³[ t₃ ▷ s₃ ∣ u₃ ] ∶ 𝑐²[ t₂ ▷ s₂ ∣ u₂ ] ∶ 𝑐[ t ▷ s ∣ u ] ∶ C 𝒄⁴[_▷_∣_] {t₃ = t₃} {t₂} {t} {s₃} {s₂} {s} {u₃} {u₂} {u} = 𝒄ⁿ[_▷_∣_] {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []} {𝐮 = u₃ ∷ u₂ ∷ u ∷ []} ⬆⁴_ : ∀{x} {t₃ t₂ t : Tm x} {u : Tm x} {A Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ u ∶ A → Γ [ x ]⊢ ⇑³ t₃ ∶ ⇑² t₂ ∶ ⇑ t ∶ ! u ∶ u ∶ A ⬆⁴_ {t₃ = t₃} {t₂} {t} = ⬆ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} ⬇⁴_ : ∀{x} {t₃ t₂ t : Tm x} {u : Tm x} {A Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ u ∶ A → Γ [ x ]⊢ ⇓³ t₃ ∶ ⇓² t₂ ∶ ⇓ t ∶ A ⬇⁴_ {t₃ = t₃} {t₂} {t} = ⬇ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} ★⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A Γ} → Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ ⊥ → Γ [ x ]⊢ ☆³ t₃ ∶ ☆² t₂ ∶ ☆ t ∶ A ★⁴_ {t₃ = t₃} {t₂} {t} = ★ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} -- -------------------------------------------------------------------------- -- -- Quotation quot : ∀{x B Γ} → Γ [ x ]⊢ B → Tm x quot (𝒗ⁿ_ {n} {x} i) = 𝑣[ suc n ] x quot (𝝀ⁿ_ {n} 𝒟) = 𝜆[ suc n ] quot 𝒟 quot (_∙ⁿ_ {n} 𝒟 𝒞) = quot 𝒟 ∘[ suc n ] quot 𝒞 quot (𝒑ⁿ⟨_,_⟩ {n} 𝒟 𝒞) = 𝑝[ suc n ]⟨ quot 𝒟 , quot 𝒞 ⟩ quot (𝝅₀ⁿ_ {n} 𝒟) = 𝜋₀[ suc n ] quot 𝒟 quot (𝝅₁ⁿ_ {n} 𝒟) = 𝜋₁[ suc n ] quot 𝒟 quot (𝜾₀ⁿ_ {n} 𝒟) = 𝜄₀[ suc n ] quot 𝒟 quot (𝜾₁ⁿ_ {n} 𝒟) = 𝜄₁[ suc n ] quot 𝒟 quot (𝒄ⁿ[_▷_∣_] {n} 𝒟 𝒞 ℰ) = 𝑐[ suc n ][ quot 𝒟 ▷ quot 𝒞 ∣ quot ℰ ] quot (⬆ⁿ_ {n} 𝒟) = ⇑[ suc n ] quot 𝒟 quot (⬇ⁿ_ {n} 𝒟) = ⇓[ suc n ] quot 𝒟 quot (★ⁿ_ {n} 𝒟) = ☆[ suc n ] quot 𝒟 -- -------------------------------------------------------------------------- -- -- Internalisation (theorem 1, p. 29 [1]; lemma 5.4, pp. 9–10 [2]) -- A , A₂ , … , Aₘ ⇒ -- x ∶ A , x₂ ∶ A₂ , … , xₘ ∶ Aₘ prefix : Cx → Cx prefix ∅ = ∅ prefix (Γ , ⟨ n , A ⟩) = prefix Γ , ⟨ suc n , A ⟩ -- yₙ ∶ yₙ₋₁ ∶ … ∶ y ∶ A⁰ₖ ∈ A , A₂ , … , Aₘ ⇒ -- xₖ ∶ yₙ ∶ yₙ₋₁ ∶ … ∶ y ∶ A⁰ₖ ∈ x ∶ A, x₂ ∶ A₂ , … , xₘ ∶ Aₘ int∈ : ∀{n x A Γ} → ⟨ n , A ⟩ ∈[ x ] Γ → ⟨ suc n , A ⟩ ∈[ x ] prefix Γ int∈ 𝐙 = 𝐙 int∈ (𝐒 i) = 𝐒 (int∈ i) -- A , A₂ , … , Aₘ ⊢ B ⇒ -- x ∶ A , x₂ ∶ A₂ , … xₘ ∶ Aₘ ⊢ t (x , x₂ , … , xₘ) ∶ B int⊢ : ∀{x B Γ} → (𝒟 : Γ [ x ]⊢ B) → prefix Γ [ x ]⊢ quot 𝒟 ∶ B int⊢ (𝒗ⁿ_ i) = 𝒗ⁿ int∈ i int⊢ (𝝀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) = _∙ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} (int⊢ 𝒟) (int⊢ 𝒞) int⊢ (𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) = 𝒑ⁿ⟨_,_⟩ {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} (int⊢ 𝒟) (int⊢ 𝒞) int⊢ (𝝅₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (𝝅₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₁ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (𝜾₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (𝜾₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₁ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (𝒄ⁿ[_▷_∣_] {𝐭 = 𝐭} {𝐬 = 𝐬} {𝐮 = 𝐮} 𝒟 𝒞 ℰ) = 𝒄ⁿ[_▷_∣_] {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} {𝐮 = quot ℰ ∷ 𝐮} (int⊢ 𝒟) (int⊢ 𝒞) (int⊢ ℰ) int⊢ (⬆ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬆ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (⬇ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬇ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) int⊢ (★ⁿ_ {𝐭 = 𝐭} 𝒟) = ★ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟) -- -------------------------------------------------------------------------- -- -- Weakening wk∈ : ∀{x A Δ} → (Γ : Cx) → A ∈[ x ] (∅ „ Γ) → A ∈[ x ] (Δ „ Γ) wk∈ ∅ () wk∈ (Γ , A) 𝐙 = 𝐙 wk∈ (Γ , A) (𝐒 i) = 𝐒 (wk∈ Γ i) wk⊢ : ∀{x A Δ} → (Γ : Cx) → ∅ „ Γ [ x ]⊢ A → Δ „ Γ [ x ]⊢ A wk⊢ Γ (𝒗ⁿ_ i) = 𝒗ⁿ wk∈ Γ i wk⊢ Γ (𝝀ⁿ_ {n} {𝐭 = 𝐭} {A} 𝒟) = 𝝀ⁿ_ {𝐭 = 𝐭} (wk⊢ (Γ , ⟨ n , A ⟩) 𝒟) wk⊢ Γ (_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) = _∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} (wk⊢ Γ 𝒟) (wk⊢ Γ 𝒞) wk⊢ Γ (𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) = 𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} (wk⊢ Γ 𝒟) (wk⊢ Γ 𝒞) wk⊢ Γ (𝝅₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₀ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) wk⊢ Γ (𝝅₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₁ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) wk⊢ Γ (𝜾₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₀ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) wk⊢ Γ (𝜾₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₁ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) wk⊢ Γ (𝒄ⁿ[_▷_∣_] {n} {𝐭 = 𝐭} {𝐬} {𝐮} {A} {B} 𝒟 𝒞 ℰ) = 𝒄ⁿ[_▷_∣_] {𝐭 = 𝐭} {𝐬 = 𝐬} {𝐮 = 𝐮} (wk⊢ Γ 𝒟) (wk⊢ (Γ , ⟨ n , A ⟩) 𝒞) (wk⊢ (Γ , ⟨ n , B ⟩) ℰ) wk⊢ Γ (⬆ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬆ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) wk⊢ Γ (⬇ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬇ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) wk⊢ Γ (★ⁿ_ {𝐭 = 𝐭} 𝒟) = ★ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟) -- -------------------------------------------------------------------------- -- -- Constructive necessitation (corollary 5.5, p. 10 [2]) nec : ∀{A} → (𝒟 : ∅ [ 0 ]⊢ A) → ⊩ quot 𝒟 ∶ A nec 𝒟 = wk⊢ ∅ (int⊢ 𝒟) -- -------------------------------------------------------------------------- -- -- Examples -- Some theorems of propositional logic module PL where I : ∀{A} → ⊩ A ⊃ A I = 𝝀 𝒗 𝟎 K : ∀{A B} → ⊩ A ⊃ B ⊃ A K = 𝝀 𝝀 𝒗 𝟏 S : ∀{A B C} → ⊩ (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C S = 𝝀 𝝀 𝝀 (𝒗 𝟐 ∙ 𝒗 𝟎) ∙ (𝒗 𝟏 ∙ 𝒗 𝟎) X1 : ∀{A B} → ⊩ A ⊃ B ⊃ A ∧ B X1 = 𝝀 𝝀 𝒑⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ -- Some derived theorems module PLExamples where -- □ (A ⊃ A) I² : ∀{A} → ⊩ 𝜆 𝑣 0 ∶ (A ⊃ A) I² = nec PL.I -- □ □ (A ⊃ A) I³ : ∀{A} → ⊩ 𝜆² 𝑣² 0 ∶ 𝜆 𝑣 0 ∶ (A ⊃ A) I³ = nec I² -- □ (A ⊃ B ⊃ A) K² : ∀{A B} → ⊩ 𝜆 𝜆 𝑣 1 ∶ (A ⊃ B ⊃ A) K² = nec PL.K -- □ □ (A ⊃ B ⊃ A) K³ : ∀{A B} → ⊩ 𝜆² 𝜆² 𝑣² 1 ∶ 𝜆 𝜆 𝑣 1 ∶ (A ⊃ B ⊃ A) K³ = nec K² -- □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) S² : ∀{A B C} → ⊩ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0) ∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) S² = nec PL.S -- □ □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) S³ : ∀{A B C} → ⊩ 𝜆² 𝜆² 𝜆² (𝑣² 2 ∘² 𝑣² 0) ∘² (𝑣² 1 ∘² 𝑣² 0) ∶ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0) ∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C) S³ = nec S² -- Some theorems of modal logic S4 module S4 where -- □ (A ⊃ B) ⊃ □ A ⊃ □ B K : ∀{A B} → ⊩ (𝑣 1 ∶ (A ⊃ B)) ⊃ 𝑣 0 ∶ A ⊃ (𝑣 1 ∘ 𝑣 0) ∶ B K = 𝝀 𝝀 (𝒗 𝟏 ∙² 𝒗 𝟎) -- □ A ⊃ A T : ∀{A} → ⊩ 𝑣 0 ∶ A ⊃ A T = 𝝀 ⬇ 𝒗 𝟎 -- □ A ⊃ □ □ A #4 : ∀{A} → ⊩ 𝑣 0 ∶ A ⊃ ! 𝑣 0 ∶ 𝑣 0 ∶ A #4 = 𝝀 ⬆ 𝒗 𝟎 -- □ A ⊃ □ B ⊃ □ □ (A ∧ B) X1 : ∀{A B} → ⊩ 𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B) X1 = 𝝀 𝝀 ⬆ 𝒑²⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ -- □ A ⊃ □ B ⊃ □ (A ∧ B) X2 : ∀{A B} → ⊩ 𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B) X2 = 𝝀 𝝀 𝒑²⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ -- □ A ∧ □ B ⊃ □ □ (A ∧ B) {- X3 : ∀{A B} → ⊩ 𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B) X3 = {!!} -- 𝝀 ⬆ 𝒑²⟨ 𝝅₀ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟎 ⟩-} -- □ A ∧ □ B ⊃ □ (A ∧ B) X4 : ∀{A B} → ⊩ 𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B) X4 = 𝝀 {!𝒑²⟨ ? , ? ⟩!} -- 𝝀 𝒑²⟨ 𝝅₀ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟎 ⟩ -- Some more derived theorems module S4Examples where -- □ (□ (A ⊃ B) ⊃ □ A ⊃ □ B) K² : ∀{A B} → ⊩ 𝜆 𝜆 𝑣 1 ∘² 𝑣 0 ∶ (𝑣 1 ∶ (A ⊃ B) ⊃ 𝑣 0 ∶ A ⊃ (𝑣 1 ∘ 𝑣 0) ∶ B) K² = nec S4.K -- -------------------------------------------------------------------------- -- -- Original examples -- Example 1 (p. 28 [1]) module Example1 where -- □ (□ A ⊃ A) E11 : ∀{A} → ⊩ 𝜆 ⇓ 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ A) E11 = nec S4.T -- □ (□ A ⊃ □ □ A) E12 : ∀{A} → ⊩ 𝜆 ⇑ 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ ! 𝑣 0 ∶ 𝑣 0 ∶ A) E12 = nec S4.#4 -- □ □ (A ⊃ B ⊃ A ∧ B) E13 : ∀{A B} → ⊩ 𝜆² 𝜆² 𝑝²⟨ 𝑣² 1 , 𝑣² 0 ⟩ ∶ 𝜆 𝜆 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ⊃ B ⊃ A ∧ B) E13 = nec (nec PL.X1) -- □ (□ A ⊃ □ B ⊃ □ □ (A ∧ B)) E14 : ∀{A B} → ⊩ 𝜆 𝜆 ⇑ 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)) E14 = nec S4.X1 -- Some more variants of example 1 module Example1a where -- □ (□ A ⊃ □ B ⊃ □ (A ∧ B)) E14a : ∀{A B} → ⊩ 𝜆 𝜆 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)) E14a = nec S4.X2 -- □ (□ A ∧ □ B ⊃ □ □ (A ∧ B)) {- E14b : ∀{A B} → ⊩ 𝜆 ⇑ 𝑝²⟨ 𝜋₀ 𝑣 0 , 𝜋₁ 𝑣 0 ⟩ ∶ (𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)) E14b = nec S4.X3 -- □ (□ A ∧ □ B ⊃ □ (A ∧ B)) E14c : ∀{A B} → ⊩ 𝜆 𝑝²⟨ 𝜋₀ 𝑣 0 , 𝜋₁ 𝑣 0 ⟩ ∶ (𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)) E14c = nec S4.X4-} -- Example 2 (pp. 31–32 [1]) module Example2 where E2 : ∀{A} → ⊩ 𝜆² ⇓² ⇑² 𝑣² 0 ∶ 𝜆 ⇓ ⇑ 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ 𝑣 0 ∶ A) E2 = 𝝀³ ⬇³ ⬆³ 𝒗³ 𝟎 E2a : ∀{A} → ⊩ 𝜆² 𝑣² 0 ∶ 𝜆 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ 𝑣 0 ∶ A) E2a = 𝝀³ 𝒗³ 𝟎 -- -------------------------------------------------------------------------- -- -- Additional examples -- De Morgan’s laws module DeMorgan where -- (A ⊃ ⊥) ∧ (B ⊃ ⊥) ⫗ (A ∨ B) ⊃ ⊥ L1 : ∀{A B} → ⊩ ¬ A ∧ ¬ B ⫗ ¬ (A ∨ B) L1 = 𝒑⟨ 𝝀 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝝅₀ 𝒗 𝟐 ∙ 𝒗 𝟎 ∣ 𝝅₁ 𝒗 𝟐 ∙ 𝒗 𝟎 ] , 𝝀 𝒑⟨ 𝝀 𝒗 𝟏 ∙ 𝜾₀ 𝒗 𝟎 , 𝝀 𝒗 𝟏 ∙ 𝜾₁ 𝒗 𝟎 ⟩ ⟩ -- (A ⊃ ⊥) ∨ (B ⊃ ⊥) ⊃ (A ⊃ ⊥) ∧ B L2 : ∀{A B} → ⊩ ¬ A ∨ ¬ B ⊃ ¬ (A ∧ B) L2 = 𝝀 𝝀 𝒄[ 𝒗 𝟏 ▷ 𝒗 𝟎 ∙ 𝝅₀ 𝒗 𝟏 ∣ 𝒗 𝟎 ∙ 𝝅₁ 𝒗 𝟏 ] -- Explosions and contradictions module ExploCon where X1 : ∀{A} → ⊩ ⊥ ⊃ A X1 = 𝝀 ★ 𝒗 𝟎 -- □ (⊥ ⊃ A) X1² : ∀{A} → ⊩ 𝜆 ☆ 𝑣 0 ∶ (⊥ ⊃ A) X1² = nec X1 -- □ ⊥ ⊃ □ A X2 : ∀{A} → ⊩ 𝑣 0 ∶ ⊥ ⊃ ☆ 𝑣 0 ∶ A X2 = 𝝀 ★² 𝒗 𝟎 X3 : ∀{A} → ⊩ ¬ A ⊃ A ⊃ ⊥ X3 = 𝝀 𝝀 𝒗 𝟏 ∙ 𝒗 𝟎 -- □ (¬ A) ⊃ □ A ⊃ □ ⊥ X4 : ∀{A} → ⊩ 𝑣 1 ∶ (¬ A) ⊃ 𝑣 0 ∶ A ⊃ 𝑣 1 ∘ 𝑣 0 ∶ ⊥ X4 = 𝝀 𝝀 𝒗 𝟏 ∙² 𝒗 𝟎 -- □ (¬ A) ⊃ □ A ⊃ □ □ ⊥ X5 : ∀{A} → ⊩ 𝑣 1 ∶ (¬ A) ⊃ 𝑣 0 ∶ A ⊃ ! (𝑣 1 ∘ 𝑣 0) ∶ 𝑣 1 ∘ 𝑣 0 ∶ ⊥ X5 = 𝝀 𝝀 ⬆ 𝒗 𝟏 ∙² 𝒗 𝟎 -- -------------------------------------------------------------------------- -- -- Further examples module Idempotence where ⊃-idem : ∀{A} → ⊩ A ⊃ A ⫗ ⊤ ⊃-idem = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎 , 𝝀 𝝀 𝒗 𝟎 ⟩ ∧-idem : ∀{A} → ⊩ A ∧ A ⫗ A ∧-idem = 𝒑⟨ 𝝀 𝝅₀ 𝒗 𝟎 , 𝝀 𝒑⟨ 𝒗 𝟎 , 𝒗 𝟎 ⟩ ⟩ ∨-idem : ∀{A} → ⊩ A ∨ A ⫗ A ∨-idem = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒗 𝟎 ∣ 𝒗 𝟎 ] , 𝝀 𝜾₀ 𝒗 𝟎 ⟩ module Commutativity where ∧-comm : ∀{A B} → ⊩ A ∧ B ⫗ B ∧ A ∧-comm = 𝒑⟨ 𝝀 𝒑⟨ 𝝅₁ 𝒗 𝟎 , 𝝅₀ 𝒗 𝟎 ⟩ , 𝝀 𝒑⟨ 𝝅₁ 𝒗 𝟎 , 𝝅₀ 𝒗 𝟎 ⟩ ⟩ ∨-comm : ∀{A B} → ⊩ A ∨ B ⫗ B ∨ A ∨-comm = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝜾₁ 𝒗 𝟎 ∣ 𝜾₀ 𝒗 𝟎 ] , 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝜾₁ 𝒗 𝟎 ∣ 𝜾₀ 𝒗 𝟎 ] ⟩ module Associativity where ∧-assoc : ∀{A B C} → ⊩ A ∧ (B ∧ C) ⫗ (A ∧ B) ∧ C ∧-assoc = 𝒑⟨ 𝝀 𝒑⟨ 𝒑⟨ 𝝅₀ 𝒗 𝟎 , 𝝅₀ 𝝅₁ 𝒗 𝟎 ⟩ , 𝝅₁ 𝝅₁ 𝒗 𝟎 ⟩ , 𝝀 𝒑⟨ 𝝅₀ 𝝅₀ 𝒗 𝟎 , 𝒑⟨ 𝝅₁ 𝝅₀ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟎 ⟩ ⟩ ⟩ ∨-assoc : ∀{A B C} → ⊩ A ∨ (B ∨ C) ⫗ (A ∨ B) ∨ C ∨-assoc = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝜾₀ 𝜾₀ 𝒗 𝟎 ∣ 𝒄[ 𝒗 𝟎 ▷ 𝜾₀ 𝜾₁ 𝒗 𝟎 ∣ 𝜾₁ 𝒗 𝟎 ] ] , 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒄[ 𝒗 𝟎 ▷ 𝜾₀ 𝒗 𝟎 ∣ 𝜾₁ 𝜾₀ 𝒗 𝟎 ] ∣ 𝜾₁ 𝜾₁ 𝒗 𝟎 ] ⟩ module Distributivity where ⊃-dist-∧ : ∀{A B C} → ⊩ A ⊃ (B ∧ C) ⫗ (A ⊃ B) ∧ (A ⊃ C) ⊃-dist-∧ = 𝒑⟨ 𝝀 𝒑⟨ 𝝀 𝝅₀ (𝒗 𝟏 ∙ 𝒗 𝟎) , 𝝀 𝝅₁ (𝒗 𝟏 ∙ 𝒗 𝟎) ⟩ , 𝝀 𝝀 𝒑⟨ 𝝅₀ 𝒗 𝟏 ∙ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟏 ∙ 𝒗 𝟎 ⟩ ⟩ ∧-dist-∨ : ∀{A B C} → ⊩ A ∧ (B ∨ C) ⫗ (A ∧ B) ∨ (A ∧ C) ∧-dist-∨ = 𝒑⟨ 𝝀 𝒄[ 𝝅₁ 𝒗 𝟎 ▷ 𝜾₀ 𝒑⟨ 𝝅₀ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ∣ 𝜾₁ 𝒑⟨ 𝝅₀ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ] , 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒑⟨ 𝝅₀ 𝒗 𝟎 , 𝜾₀ 𝝅₁ 𝒗 𝟎 ⟩ ∣ 𝒑⟨ 𝝅₀ 𝒗 𝟎 , 𝜾₁ 𝝅₁ 𝒗 𝟎 ⟩ ] ⟩ ∨-dist-∧ : ∀{A B C} → ⊩ A ∨ (B ∧ C) ⫗ (A ∨ B) ∧ (A ∨ C) ∨-dist-∧ = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒑⟨ 𝜾₀ 𝒗 𝟎 , 𝜾₀ 𝒗 𝟎 ⟩ ∣ 𝒑⟨ 𝜾₁ 𝝅₀ 𝒗 𝟎 , 𝜾₁ 𝝅₁ 𝒗 𝟎 ⟩ ] , 𝝀 𝒄[ 𝝅₀ 𝒗 𝟎 ▷ 𝜾₀ 𝒗 𝟎 ∣ 𝒄[ 𝝅₁ 𝒗 𝟏 ▷ 𝜾₀ 𝒗 𝟎 ∣ 𝜾₁ 𝒑⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ] ] ⟩ module Untitled where ⊃-law : ∀{A B C} → ⊩ (A ⊃ B) ⊃ (B ⊃ C) ⊃ A ⊃ C ⊃-law = 𝝀 𝝀 𝝀 𝒗 𝟏 ∙ (𝒗 𝟐 ∙ 𝒗 𝟎) ⊃-∧-law : ∀{A B C} → ⊩ A ⊃ B ⊃ C ⫗ (A ∧ B) ⊃ C ⊃-∧-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟏 ∙ 𝝅₀ 𝒗 𝟎 ∙ 𝝅₁ 𝒗 𝟎 , 𝝀 𝝀 𝝀 𝒗 𝟐 ∙ 𝒑⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ⟩ ∨-⊃-∧-law : ∀{A B C} → ⊩ (A ∨ B) ⊃ C ⫗ (A ⊃ C) ∧ (B ⊃ C) ∨-⊃-∧-law = 𝒑⟨ 𝝀 𝒑⟨ 𝝀 𝒗 𝟏 ∙ 𝜾₀ 𝒗 𝟎 , 𝝀 𝒗 𝟏 ∙ 𝜾₁ 𝒗 𝟎 ⟩ , 𝝀 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝝅₀ 𝒗 𝟐 ∙ 𝒗 𝟎 ∣ 𝝅₁ 𝒗 𝟐 ∙ 𝒗 𝟎 ] ⟩ module Trivial where ⊃-⊤-law : ∀{A} → ⊩ A ⊃ ⊤ ⫗ ⊤ ⊃-⊤-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎 , 𝝀 𝝀 𝒗 𝟏 ⟩ ⊤-⊃-law : ∀{A} → ⊩ ⊤ ⊃ A ⫗ A ⊤-⊃-law = 𝒑⟨ 𝝀 𝒗 𝟎 ∙ (𝝀 𝒗 𝟎) , 𝝀 𝝀 𝒗 𝟏 ⟩ ⊥-⊃-⊤-law : ∀{A} → ⊩ ⊥ ⊃ A ⫗ ⊤ ⊥-⊃-⊤-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎 , 𝝀 𝝀 ★ 𝒗 𝟎 ⟩ ∧-⊥-law : ∀{A} → ⊩ A ∧ ⊥ ⫗ ⊥ ∧-⊥-law = 𝒑⟨ 𝝀 𝝅₁ 𝒗 𝟎 , 𝝀 ★ 𝒗 𝟎 ⟩ ∨-⊥-law : ∀{A} → ⊩ A ∨ ⊥ ⫗ A ∨-⊥-law = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒗 𝟎 ∣ ★ 𝒗 𝟎 ] , 𝝀 𝜾₀ 𝒗 𝟎 ⟩ ∧-⊤-law : ∀{A} → ⊩ A ∧ ⊤ ⫗ A ∧-⊤-law = 𝒑⟨ 𝝀 𝝅₀ 𝒗 𝟎 , 𝝀 𝒑⟨ 𝒗 𝟎 , 𝝀 𝒗 𝟎 ⟩ ⟩ ∨-⊤-law : ∀{A} → ⊩ A ∨ ⊤ ⫗ ⊤ ∨-⊤-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎 , 𝝀 𝜾₁ 𝒗 𝟎 ⟩ -}