module A201602.Scratch-variables where
{-
{-
An extension of reflective λ-calculus
=====================================
A work-in-progress implementation of the Alt-Artëmov system λ∞,
extended with disjunction and falsehood.
For easy editing with Emacs agda-mode, add to your .emacs file:
'(agda-input-user-translations
(quote
(("i" "⊃") ("ii" "⫗") ("e" "⊢") ("ee" "⊩") ("n" "¬") (":." "∵")
("v" "𝑣") ("v2" "𝑣²") ("v3" "𝑣³") ("v4" "𝑣⁴") ("vn" "𝑣ⁿ")
("l" "𝜆") ("l2" "𝜆²") ("l3" "𝜆³") ("l4" "𝜆⁴") ("ln" "𝜆ⁿ")
("o" "∘") ("o2" "∘²") ("o3" "∘³") ("o4" "∘⁴") ("on" "∘ⁿ")
("p" "𝑝") ("p2" "𝑝²") ("p3" "𝑝³") ("p4" "𝑝⁴") ("pn" "𝑝ⁿ")
("pi" "𝜋")
("pi0" "𝜋₀") ("pi02" "𝜋₀²") ("pi03" "𝜋₀³") ("pi04" "𝜋₀⁴") ("pi0n" "𝜋₀ⁿ")
("pi1" "𝜋₁") ("pi12" "𝜋₁²") ("pi13" "𝜋₁³") ("pi14" "𝜋₁⁴") ("pi1n" "𝜋₁ⁿ")
("io" "𝜄")
("io0" "𝜄₀") ("io02" "𝜄₀²") ("io03" "𝜄₀³") ("io04" "𝜄₀⁴") ("io0n" "𝜄₀ⁿ")
("io1" "𝜄₁") ("io12" "𝜄₁²") ("io13" "𝜄₁³") ("io14" "𝜄₁⁴") ("io1n" "𝜄₁ⁿ")
("c" "𝑐") ("c2" "𝑐²") ("c3" "𝑐³") ("c4" "𝑐⁴") ("cn" "𝑐ⁿ")
("u" "⇑") ("u2" "⇑²") ("u3" "⇑³") ("u4" "⇑⁴") ("un" "⇑ⁿ")
("d" "⇓") ("d2" "⇓²") ("d3" "⇓³") ("d4" "⇓⁴") ("dn" "⇓ⁿ")
("x" "☆") ("x2" "☆²") ("x3" "☆³") ("x4" "☆⁴") ("xn" "☆ⁿ")
("b" "□")
("mv" "𝒗") ("mv2" "𝒗²") ("mv3" "𝒗³") ("mv4" "𝒗⁴") ("mvn" "𝒗ⁿ")
("ml" "𝝀") ("ml2" "𝝀²") ("ml3" "𝝀³") ("ml4" "𝝀⁴") ("mln" "𝝀ⁿ")
("mo" "∙") ("mo2" "∙²") ("mo3" "∙³") ("mo4" "∙⁴") ("mon" "∙ⁿ")
("mp" "𝒑") ("mp2" "𝒑²") ("mp3" "𝒑³") ("mp4" "𝒑⁴") ("mpn" "𝒑ⁿ")
("mpi" "𝝅")
("mpi0" "𝝅₀") ("mpi02" "𝝅₀²") ("mpi03" "𝝅₀³") ("mpi04" "𝝅₀⁴") ("mpi0n" "𝝅₀ⁿ")
("mpi1" "𝝅₁") ("mpi12" "𝝅₁²") ("mpi13" "𝝅₁³") ("mpi14" "𝝅₁⁴") ("mpi1n" "𝝅₁ⁿ")
("mi" "𝜾")
("mi0" "𝜾₀") ("mi02" "𝜾₀²") ("mi03" "𝜾₀³") ("mi04" "𝜾₀⁴") ("mi0n" "𝜾₀ⁿ")
("mi1" "𝜾₁") ("mi12" "𝜾₁²") ("mi13" "𝜾₁³") ("mi14" "𝜾₁⁴") ("mi1n" "𝜾₁ⁿ")
("mc" "𝒄") ("mc2" "𝒄²") ("mc3" "𝒄³") ("mc4" "𝒄⁴") ("mcn" "𝒄ⁿ")
("mu" "⬆") ("mu2" "⬆²") ("mu3" "⬆³") ("mu4" "⬆⁴") ("mun" "⬆ⁿ")
("md" "⬇") ("md2" "⬇²") ("md3" "⬇³") ("md4" "⬇⁴") ("mdn" "⬇ⁿ")
("mx" "★") ("mx2" "★²") ("mx3" "★³") ("mx4" "★⁴") ("mxn" "★ⁿ")
("mb" "■")
("mS" "𝐒") ("mZ" "𝐙")
("m0" "𝟎") ("m1" "𝟏") ("m2" "𝟐") ("m3" "𝟑") ("m4" "𝟒")
("ss" "𝐬") ("ts" "𝐭") ("us" "𝐮") ("xs" "𝐱") ("ys" "𝐲") ("zs" "𝐳")
("C" "𝒞") ("D" "𝒟") ("E" "ℰ")
("N" "ℕ"))))
-}
module Scratch-variables where
open import Data.Nat using (ℕ ; zero ; suc ; pred ; _⊔_ )
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
infixl 9 !_
infixl 9 𝑣_ 𝑣²_ 𝑣³_ 𝑣⁴_ 𝑣ⁿ_ 𝒗_ 𝒗²_ 𝒗³_ 𝒗⁴_ 𝒗ⁿ_
infixl 9 ☆_ ☆²_ ☆³_ ☆⁴_ ☆ⁿ_ ★_ ★²_ ★³_ ★⁴_ ★ⁿ_
infixl 8 𝜋₀_ 𝜋₀²_ 𝜋₀³_ 𝜋₀⁴_ 𝜋₀ⁿ_ 𝝅₀_ 𝝅₀²_ 𝝅₀³_ 𝝅₀⁴_ 𝝅₀ⁿ_
infixl 8 𝜋₁_ 𝜋₁²_ 𝜋₁³_ 𝜋₁⁴_ 𝜋₁ⁿ_ 𝝅₁_ 𝝅₁²_ 𝝅₁³_ 𝝅₁⁴_ 𝝅₁ⁿ_
infixl 8 𝜄₀_ 𝜄₀²_ 𝜄₀³_ 𝜄₀⁴_ 𝜄₀ⁿ_ 𝜾₀_ 𝜾₀²_ 𝜾₀³_ 𝜾₀⁴_ 𝜾₀ⁿ_
infixl 8 𝜄₁_ 𝜄₁²_ 𝜄₁³_ 𝜄₁⁴_ 𝜄₁ⁿ_ 𝜾₁_ 𝜾₁²_ 𝜾₁³_ 𝜾₁⁴_ 𝜾₁ⁿ_
infixl 7 _∘_ _∘²_ _∘³_ _∘⁴_ _∘ⁿ_ _∙_ _∙²_ _∙³_ _∙⁴_ _∙ⁿ_
infixr 6 ⇑_ ⇑²_ ⇑³_ ⇑⁴_ ⇑ⁿ_ ⬆_ ⬆²_ ⬆³_ ⬆⁴_ ⬆ⁿ_
infixr 6 ⇓_ ⇓²_ ⇓³_ ⇓⁴_ ⇓ⁿ_ ⬇_ ⬇²_ ⬇³_ ⬇⁴_ ⬇ⁿ_
infixr 5 𝜆_ 𝜆²_ 𝜆³_ 𝜆⁴_ 𝜆ⁿ_ 𝝀_ 𝝀²_ 𝝀³_ 𝝀⁴_ 𝝀ⁿ_
infixr 5 _∶_ _∵_ _∷_
infixr 4 ¬_
infixl 4 _∧_
infixl 3 _∨_ _,_ _„_
infixr 2 _⊃_
infixr 1 _⫗_
infixr 0 _[_]⊢_ ⊩_
-- --------------------------------------------------------------------------
--
-- Untyped syntax
-- Term constructors with variable count
data Tm : ℕ → Set where
-- Variable reference at level n
𝑣[_]_ : ℕ → (x : ℕ) → Tm (suc x)
-- Abstraction (⊃I) at level n
𝜆[_]_ : ∀{x} → ℕ → Tm x → Tm (pred x)
-- Application (⊃E) at level n
_∘[_]_ : ∀{x y} → Tm x → ℕ → Tm y → Tm (x ⊔ y)
-- Pair (∧I) at level n
𝑝[_]⟨_,_⟩ : ∀{x y} → ℕ → Tm x → Tm y → Tm (x ⊔ y)
-- 0th projection (∧E₀) at level n
𝜋₀[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- 1st projection (∧E₁) at level n
𝜋₁[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- 0th injection (∨I₀) at level n
𝜄₀[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- 1st injection (∨I₁) at level n
𝜄₁[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- Case split (∨E) at level n
𝑐[_][_▷_∣_] : ∀{x y z} → ℕ → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z)
-- Artëmov’s “proof checker”
!_ : ∀{x} → Tm x → Tm x
-- Reification at level n
⇑[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- Reflection at level n
⇓[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- Explosion (⊥E) at level n
☆[_]_ : ∀{x} → ℕ → Tm x → Tm x
-- Type constructors
data Ty : Set where
-- Implication
_⊃_ : Ty → Ty → Ty
-- Conjunction
_∧_ : Ty → Ty → Ty
-- Disjunction
_∨_ : Ty → Ty → Ty
-- Explicit provability
_∶_ : ∀{x} → Tm x → Ty → Ty
-- Falsehood
⊥ : Ty
-- --------------------------------------------------------------------------
--
-- Example types
-- Truth
⊤ : Ty
⊤ = ⊥ ⊃ ⊥
-- Negation
¬_ : Ty → Ty
¬ A = A ⊃ ⊥
-- Equivalence
_⫗_ : Ty → Ty → Ty
A ⫗ B = (A ⊃ B) ∧ (B ⊃ A)
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 1
𝑣_ : (x : ℕ) → Tm (suc x)
𝑣 x = 𝑣[ 1 ] x
𝜆_ : ∀{x} → Tm x → Tm (pred x)
𝜆 t = 𝜆[ 1 ] t
_∘_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
t ∘ s = t ∘[ 1 ] s
𝑝⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
𝑝⟨ t , s ⟩ = 𝑝[ 1 ]⟨ t , s ⟩
𝜋₀_ : ∀{x} → Tm x → Tm x
𝜋₀ t = 𝜋₀[ 1 ] t
𝜋₁_ : ∀{x} → Tm x → Tm x
𝜋₁ t = 𝜋₁[ 1 ] t
𝜄₀_ : ∀{x} → Tm x → Tm x
𝜄₀ t = 𝜄₀[ 1 ] t
𝜄₁_ : ∀{x} → Tm x → Tm x
𝜄₁ t = 𝜄₁[ 1 ] t
𝑐[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z)
𝑐[ t ▷ s ∣ r ] = 𝑐[ 1 ][ t ▷ s ∣ r ]
⇑_ : ∀{x} → Tm x → Tm x
⇑ t = ⇑[ 1 ] t
⇓_ : ∀{x} → Tm x → Tm x
⇓ t = ⇓[ 1 ] t
☆_ : ∀{x} → Tm x → Tm x
☆ t = ☆[ 1 ] t
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 2
𝑣²_ : (x : ℕ) → Tm (suc x)
𝑣² x = 𝑣[ 2 ] x
𝜆²_ : ∀{x} → Tm x → Tm (pred x)
𝜆² t₂ = 𝜆[ 2 ] t₂
_∘²_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
t₂ ∘² s₂ = t₂ ∘[ 2 ] s₂
𝑝²⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
𝑝²⟨ t₂ , s₂ ⟩ = 𝑝[ 2 ]⟨ t₂ , s₂ ⟩
𝜋₀²_ : ∀{x} → Tm x → Tm x
𝜋₀² t₂ = 𝜋₀[ 2 ] t₂
𝜋₁²_ : ∀{x} → Tm x → Tm x
𝜋₁² t₂ = 𝜋₁[ 2 ] t₂
𝜄₀²_ : ∀{x} → Tm x → Tm x
𝜄₀² t₂ = 𝜄₀[ 2 ] t₂
𝜄₁²_ : ∀{x} → Tm x → Tm x
𝜄₁² t₂ = 𝜄₁[ 2 ] t₂
𝑐²[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z)
𝑐²[ t₂ ▷ s₂ ∣ r₂ ] = 𝑐[ 2 ][ t₂ ▷ s₂ ∣ r₂ ]
⇑²_ : ∀{x} → Tm x → Tm x
⇑² t₂ = ⇑[ 2 ] t₂
⇓²_ : ∀{x} → Tm x → Tm x
⇓² t₂ = ⇓[ 2 ] t₂
☆²_ : ∀{x} → Tm x → Tm x
☆² t = ☆[ 2 ] t
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 3
𝑣³_ : (x : ℕ) → Tm (suc x)
𝑣³ x = 𝑣[ 3 ] x
𝜆³_ : ∀{x} → Tm x → Tm (pred x)
𝜆³ t₃ = 𝜆[ 3 ] t₃
_∘³_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
t₃ ∘³ s₃ = t₃ ∘[ 3 ] s₃
𝑝³⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
𝑝³⟨ t₃ , s₃ ⟩ = 𝑝[ 3 ]⟨ t₃ , s₃ ⟩
𝜋₀³_ : ∀{x} → Tm x → Tm x
𝜋₀³ t₃ = 𝜋₀[ 3 ] t₃
𝜋₁³_ : ∀{x} → Tm x → Tm x
𝜋₁³ t₃ = 𝜋₁[ 3 ] t₃
𝜄₀³_ : ∀{x} → Tm x → Tm x
𝜄₀³ t₃ = 𝜄₀[ 3 ] t₃
𝜄₁³_ : ∀{x} → Tm x → Tm x
𝜄₁³ t₃ = 𝜄₁[ 3 ] t₃
𝑐³[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z)
𝑐³[ t₃ ▷ s₃ ∣ r₃ ] = 𝑐[ 3 ][ t₃ ▷ s₃ ∣ r₃ ]
⇑³_ : ∀{x} → Tm x → Tm x
⇑³ t₃ = ⇑[ 3 ] t₃
⇓³_ : ∀{x} → Tm x → Tm x
⇓³ t₃ = ⇓[ 3 ] t₃
☆³_ : ∀{x} → Tm x → Tm x
☆³ t = ☆[ 3 ] t
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 4
𝑣⁴_ : (x : ℕ) → Tm (suc x)
𝑣⁴ x = 𝑣[ 4 ] x
𝜆⁴_ : ∀{x} → Tm x → Tm (pred x)
𝜆⁴ t₄ = 𝜆[ 4 ] t₄
_∘⁴_ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
t₄ ∘⁴ s₄ = t₄ ∘[ 4 ] s₄
𝑝⁴⟨_,_⟩ : ∀{x y} → Tm x → Tm y → Tm (x ⊔ y)
𝑝⁴⟨ t₄ , s₄ ⟩ = 𝑝[ 4 ]⟨ t₄ , s₄ ⟩
𝜋₀⁴_ : ∀{x} → Tm x → Tm x
𝜋₀⁴ t₄ = 𝜋₀[ 4 ] t₄
𝜋₁⁴_ : ∀{x} → Tm x → Tm x
𝜋₁⁴ t₄ = 𝜋₁[ 4 ] t₄
𝜄₀⁴_ : ∀{x} → Tm x → Tm x
𝜄₀⁴ t₄ = 𝜄₀[ 4 ] t₄
𝜄₁⁴_ : ∀{x} → Tm x → Tm x
𝜄₁⁴ t₄ = 𝜄₁[ 4 ] t₄
𝑐⁴[_▷_∣_] : ∀{x y z} → Tm x → Tm y → Tm z → Tm (x ⊔ pred y ⊔ pred z)
𝑐⁴[ t₄ ▷ s₄ ∣ r₄ ] = 𝑐[ 4 ][ t₄ ▷ s₄ ∣ r₄ ]
⇑⁴_ : ∀{x} → Tm x → Tm x
⇑⁴ t₄ = ⇑[ 4 ] t₄
⇓⁴_ : ∀{x} → Tm x → Tm x
⇓⁴ t₄ = ⇓[ 4 ] t₄
☆⁴_ : ∀{x} → Tm x → Tm x
☆⁴ t = ☆[ 4 ] t
-- --------------------------------------------------------------------------
--
-- Example closed and open untyped terms
module Untyped where
′I : Tm 0
′I = 𝜆 𝜆 𝑣 0
I : Tm 0
I = 𝜆 𝑣 0
I′ : Tm 1
I′ = 𝑣 0
′K : Tm 0
′K = 𝜆 𝜆 𝜆 𝑣 1
K : Tm 0
K = 𝜆 𝜆 𝑣 1
K′ : Tm 1
K′ = 𝜆 𝑣 1
K″ : Tm 2
K″ = 𝑣 1
-- --------------------------------------------------------------------------
--
-- Vector notation for type assertions at level n (p. 27 [1])
-- Term vectors with length and variable count
data Tms : ℕ → ℕ → Set where
[] : ∀{x} → Tms 0 x
_∷_ : ∀{n x} → Tm x → Tms n x → Tms (suc n) x
-- tₙ ∶ tₙ₋₁ ∶ … ∶ t ∶ A
_∵_ : ∀{n x} → Tms n x → Ty → Ty
[] ∵ A = A
(t ∷ 𝐭) ∵ A = t ∶ 𝐭 ∵ A
-- 𝑣ⁿ x ∶ 𝑣ⁿ⁻¹ x ∶ … ∶ 𝑣 x
𝑣ⁿ_ : ∀{n} → (x : ℕ) → Tms n (suc x)
𝑣ⁿ_ {zero} x = []
𝑣ⁿ_ {suc n} x = 𝑣[ suc n ] x ∷ 𝑣ⁿ x
-- 𝜆ⁿ tₙ ∶ 𝜆ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜆 t
𝜆ⁿ_ : ∀{n x} → Tms n x → Tms n (pred x)
𝜆ⁿ_ {zero} [] = []
𝜆ⁿ_ {suc n} (t ∷ 𝐭) = 𝜆[ suc n ] t ∷ 𝜆ⁿ 𝐭
-- tₙ ∘ⁿ sₙ ∶ tₙ₋₁ ∘ⁿ⁻¹ ∶ sₙ₋₁ ∶ … ∶ t ∘ s
_∘ⁿ_ : ∀{n x y} → Tms n x → Tms n y → Tms n (x ⊔ y)
_∘ⁿ_ {zero} [] [] = []
_∘ⁿ_ {suc n} (t ∷ 𝐭) (s ∷ 𝐬) = t ∘[ suc n ] s ∷ 𝐭 ∘ⁿ 𝐬
-- 𝑝ⁿ⟨ tₙ , sₙ ⟩ ∶ 𝑝ⁿ⁻¹⟨ tₙ₋₁ , sₙ₋₁ ⟩ ∶ … ∶ p⟨ t , s ⟩
𝑝ⁿ⟨_,_⟩ : ∀{n x y} → Tms n x → Tms n y → Tms n (x ⊔ y)
𝑝ⁿ⟨_,_⟩ {zero} [] [] = []
𝑝ⁿ⟨_,_⟩ {suc n} (t ∷ 𝐭) (s ∷ 𝐬) = 𝑝[ suc n ]⟨ t , s ⟩ ∷ 𝑝ⁿ⟨ 𝐭 , 𝐬 ⟩
-- 𝜋₀ⁿ tₙ ∶ 𝜋₀ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜋₀ t
𝜋₀ⁿ_ : ∀{n x} → Tms n x → Tms n x
𝜋₀ⁿ_ {zero} [] = []
𝜋₀ⁿ_ {suc n} (t ∷ 𝐭) = 𝜋₀[ suc n ] t ∷ 𝜋₀ⁿ 𝐭
-- 𝜋₁ⁿ tₙ ∶ 𝜋₁ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜋₁ t
𝜋₁ⁿ_ : ∀{n x} → Tms n x → Tms n x
𝜋₁ⁿ_ {zero} [] = []
𝜋₁ⁿ_ {suc n} (t ∷ 𝐭) = 𝜋₁[ suc n ] t ∷ 𝜋₁ⁿ 𝐭
-- 𝜄₀ⁿ tₙ ∶ 𝜄₀ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜄₀ t
𝜄₀ⁿ_ : ∀{n x} → Tms n x → Tms n x
𝜄₀ⁿ_ {zero} [] = []
𝜄₀ⁿ_ {suc n} (t ∷ 𝐭) = 𝜄₀[ suc n ] t ∷ 𝜄₀ⁿ 𝐭
-- 𝜄₁ⁿ tₙ ∶ 𝜄₁ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜄₁ t
𝜄₁ⁿ_ : ∀{n x} → Tms n x → Tms n x
𝜄₁ⁿ_ {zero} [] = []
𝜄₁ⁿ_ {suc n} (t ∷ 𝐭) = 𝜄₁[ suc n ] t ∷ 𝜄₁ⁿ 𝐭
-- 𝑐ⁿ[ tₙ ▷ sₙ ∣ rₙ ] ∶ 𝑐ⁿ⁻¹[ tₙ₋₁ ▷ sₙ₋₁ ∣ rₙ₋₁ ] ∶ … ∶ 𝑐[ t ▷ s ∣ r ]
𝑐ⁿ[_▷_∣_] : ∀{n x y z} → Tms n x → Tms n y → Tms n z → Tms n (x ⊔ pred y ⊔ pred z)
𝑐ⁿ[_▷_∣_] {zero} [] [] [] = []
𝑐ⁿ[_▷_∣_] {suc n} (t ∷ 𝐭) (s ∷ 𝐬) (u ∷ 𝐮) = 𝑐[ suc n ][ t ▷ s ∣ u ] ∷ 𝑐ⁿ[ 𝐭 ▷ 𝐬 ∣ 𝐮 ]
-- ⇑ⁿ tₙ ∶ ⇑ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ⇑ t
⇑ⁿ_ : ∀{n x} → Tms n x → Tms n x
⇑ⁿ_ {zero} [] = []
⇑ⁿ_ {suc n} (t ∷ 𝐭) = ⇑[ suc n ] t ∷ ⇑ⁿ 𝐭
-- ⇓ⁿ tₙ ∶ ⇑ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ⇑ t
⇓ⁿ_ : ∀{n x} → Tms n x → Tms n x
⇓ⁿ_ {zero} [] = []
⇓ⁿ_ {suc n} (t ∷ 𝐭) = ⇓[ suc n ] t ∷ ⇓ⁿ 𝐭
-- ☆ⁿ tₙ ∶ ☆ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ☆ t
☆ⁿ_ : ∀{n x} → Tms n x → Tms n x
☆ⁿ_ {zero} [] = []
☆ⁿ_ {suc n} (t ∷ 𝐭) = ☆[ suc n ] t ∷ ☆ⁿ 𝐭
-- --------------------------------------------------------------------------
--
-- Typed syntax
-- Hypotheses
Hyp : Set
Hyp = ℕ × Ty
-- Contexts
data Cx : Set where
∅ : Cx
_,_ : Cx → Hyp → Cx
_„_ : Cx → Cx → Cx
Γ „ ∅ = Γ
Γ „ (Δ , A) = Γ „ Δ , A
-- Context membership evidence
data _∈[_]_ : Hyp → ℕ → Cx → Set where
𝐙 : ∀{A Γ}
→ A ∈[ zero ] (Γ , A)
𝐒_ : ∀{x A B Γ}
→ A ∈[ x ] Γ
→ A ∈[ suc x ] (Γ , B)
-- Typed terms with variable count
data _[_]⊢_ (Γ : Cx) : ℕ → Ty → Set where
-- Variable reference
𝒗ⁿ_ : ∀{n x A}
→ ⟨ n , A ⟩ ∈[ x ] Γ
→ Γ [ suc x ]⊢ 𝑣ⁿ_ {n} x ∵ A
-- Abstraction (⊃I) at level n
𝝀ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B}
→ Γ , ⟨ n , A ⟩ [ x ]⊢ 𝐭 ∵ B
→ Γ [ pred x ]⊢ 𝜆ⁿ 𝐭 ∵ (A ⊃ B)
-- Application (⊃E) at level n
_∙ⁿ_ : ∀{n x y} {𝐭 : Tms n x} {𝐬 : Tms n y} {A B}
→ Γ [ x ]⊢ 𝐭 ∵ (A ⊃ B) → Γ [ y ]⊢ 𝐬 ∵ A
→ Γ [ x ⊔ y ]⊢ 𝐭 ∘ⁿ 𝐬 ∵ B
-- Pair (∧I) at level n
𝒑ⁿ⟨_,_⟩ : ∀{n x y} {𝐭 : Tms n x} {𝐬 : Tms n y} {A B}
→ Γ [ x ]⊢ 𝐭 ∵ A → Γ [ y ]⊢ 𝐬 ∵ B
→ Γ [ x ⊔ y ]⊢ 𝑝ⁿ⟨ 𝐭 , 𝐬 ⟩ ∵ (A ∧ B)
-- 0th projection (∧E₀) at level n
𝝅₀ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B}
→ Γ [ x ]⊢ 𝐭 ∵ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₀ⁿ 𝐭 ∵ A
-- 1st projection (∧E₁) at level n
𝝅₁ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B}
→ Γ [ x ]⊢ 𝐭 ∵ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₁ⁿ 𝐭 ∵ B
-- 0th injection (∨I₀) at level n
𝜾₀ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B}
→ Γ [ x ]⊢ 𝐭 ∵ A
→ Γ [ x ]⊢ 𝜄₀ⁿ 𝐭 ∵ (A ∨ B)
-- 1st injection (∨I₁) at level n
𝜾₁ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A B}
→ Γ [ x ]⊢ 𝐭 ∵ B
→ Γ [ x ]⊢ 𝜄₁ⁿ 𝐭 ∵ (A ∨ B)
-- Case split (∨E) at level n
𝒄ⁿ[_▷_∣_] : ∀{n x y z} {𝐭 : Tms n x} {𝐬 : Tms n y} {𝐮 : Tms n z} {A B C}
→ Γ [ x ]⊢ 𝐭 ∵ (A ∨ B) → Γ , ⟨ n , A ⟩ [ y ]⊢ 𝐬 ∵ C
→ Γ , ⟨ n , B ⟩ [ z ]⊢ 𝐮 ∵ C
→ Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐ⁿ[ 𝐭 ▷ 𝐬 ∣ 𝐮 ] ∵ C
-- Reification at level n
⬆ⁿ_ : ∀{n x} {𝐭 : Tms n x} {u : Tm x} {A}
→ Γ [ x ]⊢ 𝐭 ∵ (u ∶ A)
→ Γ [ x ]⊢ ⇑ⁿ 𝐭 ∵ (! u ∶ u ∶ A)
-- Reflection at level n
⬇ⁿ_ : ∀{n x} {𝐭 : Tms n x} {u : Tm x} {A}
→ Γ [ x ]⊢ 𝐭 ∵ (u ∶ A)
→ Γ [ x ]⊢ ⇓ⁿ 𝐭 ∵ A
-- Explosion (⊥E)
★ⁿ_ : ∀{n x} {𝐭 : Tms n x} {A}
→ Γ [ x ]⊢ 𝐭 ∵ ⊥
→ Γ [ x ]⊢ ☆ⁿ 𝐭 ∵ A
-- Closed typed terms
⊩_ : Ty → Set
⊩ A = ∀{Γ} → Γ [ 0 ]⊢ A
-- --------------------------------------------------------------------------
--
-- Notation for context membership evidence
𝟎 : ∀{A Γ}
→ A ∈[ 0 ] (Γ , A)
𝟎 = 𝐙
𝟏 : ∀{A B Γ}
→ A ∈[ 1 ] (Γ , A , B)
𝟏 = 𝐒 𝟎
𝟐 : ∀{A B C Γ}
→ A ∈[ 2 ] (Γ , A , B , C)
𝟐 = 𝐒 𝟏
𝟑 : ∀{A B C D Γ}
→ A ∈[ 3 ] (Γ , A , B , C , D)
𝟑 = 𝐒 𝟐
𝟒 : ∀{A B C D E Γ}
→ A ∈[ 4 ] (Γ , A , B , C , D , E)
𝟒 = 𝐒 𝟑
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 1
𝒗_ : ∀{x A Γ}
→ ⟨ 0 , A ⟩ ∈[ x ] Γ
→ Γ [ suc x ]⊢ A
𝒗_ = 𝒗ⁿ_
𝝀_ : ∀{x A B Γ}
→ Γ , ⟨ 0 , A ⟩ [ x ]⊢ B
→ Γ [ pred x ]⊢ A ⊃ B
𝝀_ {x} =
𝝀ⁿ_ {x = x} {𝐭 = []}
_∙_ : ∀{x y A B Γ}
→ Γ [ x ]⊢ A ⊃ B → Γ [ y ]⊢ A
→ Γ [ x ⊔ y ]⊢ B
_∙_ {x} {y} =
_∙ⁿ_ {x = x} {y = y} {𝐭 = []} {𝐬 = []}
𝒑⟨_,_⟩ : ∀{x y A B Γ}
→ Γ [ x ]⊢ A → Γ [ y ]⊢ B
→ Γ [ x ⊔ y ]⊢ A ∧ B
𝒑⟨_,_⟩ {x} {y} =
𝒑ⁿ⟨_,_⟩ {x = x} {y = y} {𝐭 = []} {𝐬 = []}
𝝅₀_ : ∀{x A B Γ}
→ Γ [ x ]⊢ A ∧ B
→ Γ [ x ]⊢ A
𝝅₀_ {x} =
𝝅₀ⁿ_ {x = x} {𝐭 = []}
𝝅₁_ : ∀{x A B Γ}
→ Γ [ x ]⊢ A ∧ B
→ Γ [ x ]⊢ B
𝝅₁_ {x} =
𝝅₁ⁿ_ {x = x} {𝐭 = []}
𝜾₀_ : ∀{x A B Γ}
→ Γ [ x ]⊢ A
→ Γ [ x ]⊢ A ∨ B
𝜾₀_ {x} =
𝜾₀ⁿ_ {x = x} {𝐭 = []}
𝜾₁_ : ∀{x A B Γ}
→ Γ [ x ]⊢ B
→ Γ [ x ]⊢ A ∨ B
𝜾₁_ {x} =
𝜾₁ⁿ_ {x = x} {𝐭 = []}
𝒄[_▷_∣_] : ∀{x y z A B C Γ}
→ Γ [ x ]⊢ A ∨ B → Γ , ⟨ 0 , A ⟩ [ y ]⊢ C
→ Γ , ⟨ 0 , B ⟩ [ z ]⊢ C
→ Γ [ x ⊔ pred y ⊔ pred z ]⊢ C
𝒄[_▷_∣_] {x} {y} {z} =
𝒄ⁿ[_▷_∣_] {x = x} {y = y}
{z = z} {𝐭 = []} {𝐬 = []}
{𝐮 = []}
⬆_ : ∀{x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ u ∶ A
→ Γ [ x ]⊢ ! u ∶ u ∶ A
⬆_ {x} =
⬆ⁿ_ {x = x} {𝐭 = []}
⬇_ : ∀{x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ u ∶ A
→ Γ [ x ]⊢ A
⬇_ {x} =
⬇ⁿ_ {x = x} {𝐭 = []}
★_ : ∀{x A Γ}
→ Γ [ x ]⊢ ⊥
→ Γ [ x ]⊢ A
★_ {x} =
★ⁿ_ {x = x} {𝐭 = []}
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 2
𝒗²_ : ∀{x A Γ}
→ ⟨ 1 , A ⟩ ∈[ x ] Γ
→ Γ [ suc x ]⊢ 𝑣 x ∶ A
𝒗²_ = 𝒗ⁿ_
𝝀²_ : ∀{x} {t : Tm x} {A B Γ}
→ Γ , ⟨ 1 , A ⟩ [ x ]⊢ t ∶ B
→ Γ [ pred x ]⊢ 𝜆 t ∶ (A ⊃ B)
𝝀²_ {t = t} =
𝝀ⁿ_ {𝐭 = t ∷ []}
_∙²_ : ∀{x y} {t : Tm x} {s : Tm y} {A B Γ}
→ Γ [ x ]⊢ t ∶ (A ⊃ B) → Γ [ y ]⊢ s ∶ A
→ Γ [ x ⊔ y ]⊢ t ∘ s ∶ B
_∙²_ {t = t} {s} =
_∙ⁿ_ {𝐭 = t ∷ []} {𝐬 = s ∷ []}
𝒑²⟨_,_⟩ : ∀{x y} {t : Tm x} {s : Tm y} {A B Γ}
→ Γ [ x ]⊢ t ∶ A → Γ [ y ]⊢ s ∶ B
→ Γ [ x ⊔ y ]⊢ 𝑝⟨ t , s ⟩ ∶ (A ∧ B)
𝒑²⟨_,_⟩ {t = t} {s} =
𝒑ⁿ⟨_,_⟩ {𝐭 = t ∷ []} {𝐬 = s ∷ []}
𝝅₀²_ : ∀{x} {t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t ∶ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₀ t ∶ A
𝝅₀²_ {t = t} =
𝝅₀ⁿ_ {𝐭 = t ∷ []}
𝝅₁²_ : ∀{x} {t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t ∶ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₁ t ∶ B
𝝅₁²_ {t = t} =
𝝅₁ⁿ_ {𝐭 = t ∷ []}
𝜾₀²_ : ∀{x} {t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t ∶ A
→ Γ [ x ]⊢ 𝜄₀ t ∶ (A ∨ B)
𝜾₀²_ {t = t} =
𝜾₀ⁿ_ {𝐭 = t ∷ []}
𝜾₁²_ : ∀{x} {t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t ∶ B
→ Γ [ x ]⊢ 𝜄₁ t ∶ (A ∨ B)
𝜾₁²_ {t = t} =
𝜾₁ⁿ_ {𝐭 = t ∷ []}
𝒄²[_▷_∣_] : ∀{x y z} {t : Tm x} {s : Tm y} {u : Tm z} {A B C Γ}
→ Γ [ x ]⊢ t ∶ (A ∨ B) → Γ , ⟨ 1 , A ⟩ [ y ]⊢ s ∶ C
→ Γ , ⟨ 1 , B ⟩ [ z ]⊢ u ∶ C
→ Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐[ t ▷ s ∣ u ] ∶ C
𝒄²[_▷_∣_] {t = t} {s} {u} =
𝒄ⁿ[_▷_∣_] {𝐭 = t ∷ []} {𝐬 = s ∷ []}
{𝐮 = u ∷ []}
⬆²_ : ∀{x} {t : Tm x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ t ∶ u ∶ A
→ Γ [ x ]⊢ ⇑ t ∶ ! u ∶ u ∶ A
⬆²_ {t = t} {u} =
⬆ⁿ_ {𝐭 = t ∷ []}
⬇²_ : ∀{x} {t : Tm x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ t ∶ u ∶ A
→ Γ [ x ]⊢ ⇓ t ∶ A
⬇²_ {t = t} {u} =
⬇ⁿ_ {𝐭 = t ∷ []}
★²_ : ∀{x} {t : Tm x} {A Γ}
→ Γ [ x ]⊢ t ∶ ⊥
→ Γ [ x ]⊢ ☆ t ∶ A
★²_ {t = t} =
★ⁿ_ {𝐭 = t ∷ []}
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 3
𝒗³_ : ∀{x A Γ}
→ ⟨ 2 , A ⟩ ∈[ x ] Γ
→ Γ [ suc x ]⊢ 𝑣² x ∶ 𝑣 x ∶ A
𝒗³_ = 𝒗ⁿ_
𝝀³_ : ∀{x} {t₂ t : Tm x} {A B Γ}
→ Γ , ⟨ 2 , A ⟩ [ x ]⊢ t₂ ∶ t ∶ B
→ Γ [ pred x ]⊢ 𝜆² t₂ ∶ 𝜆 t ∶ (A ⊃ B)
𝝀³_ {t₂ = t₂} {t} =
𝝀ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
_∙³_ : ∀{x y} {t₂ t : Tm x} {s₂ s : Tm y} {A B Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ (A ⊃ B) → Γ [ y ]⊢ s₂ ∶ s ∶ A
→ Γ [ x ⊔ y ]⊢ t₂ ∘² s₂ ∶ t ∘ s ∶ B
_∙³_ {t₂ = t₂} {t} {s₂} {s} =
_∙ⁿ_ {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []}
𝒑³⟨_,_⟩ : ∀{x y} {t₂ t : Tm x} {s₂ s : Tm y} {A B Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ A → Γ [ y ]⊢ s₂ ∶ s ∶ B
→ Γ [ x ⊔ y ]⊢ 𝑝²⟨ t₂ , s₂ ⟩ ∶ 𝑝⟨ t , s ⟩ ∶ (A ∧ B)
𝒑³⟨_,_⟩ {t₂ = t₂} {t} {s₂} {s} =
𝒑ⁿ⟨_,_⟩ {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []}
𝝅₀³_ : ∀{x} {t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₀² t₂ ∶ 𝜋₀ t ∶ A
𝝅₀³_ {t₂ = t₂} {t} =
𝝅₀ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
𝝅₁³_ : ∀{x} {t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₁² t₂ ∶ 𝜋₁ t ∶ B
𝝅₁³_ {t₂ = t₂} {t} =
𝝅₁ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
𝜾₀³_ : ∀{x} {t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ A
→ Γ [ x ]⊢ 𝜄₀² t₂ ∶ 𝜄₀ t ∶ (A ∨ B)
𝜾₀³_ {t₂ = t₂} {t} =
𝜾₀ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
𝜾₁³_ : ∀{x} {t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ B
→ Γ [ x ]⊢ 𝜄₁² t₂ ∶ 𝜄₁ t ∶ (A ∨ B)
𝜾₁³_ {t₂ = t₂} {t} =
𝜾₁ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
𝒄³[_▷_∣_] : ∀{x y z} {t₂ t : Tm x} {s₂ s : Tm y} {u₂ u : Tm z} {A B C Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ (A ∨ B) → Γ , ⟨ 2 , A ⟩ [ y ]⊢ s₂ ∶ s ∶ C
→ Γ , ⟨ 2 , B ⟩ [ z ]⊢ u₂ ∶ u ∶ C
→ Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐²[ t₂ ▷ s₂ ∣ u₂ ] ∶ 𝑐[ t ▷ s ∣ u ] ∶ C
𝒄³[_▷_∣_] {t₂ = t₂} {t} {s₂} {s} {u₂} {u} =
𝒄ⁿ[_▷_∣_] {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []}
{𝐮 = u₂ ∷ u ∷ []}
⬆³_ : ∀{x} {t₂ t : Tm x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ u ∶ A
→ Γ [ x ]⊢ ⇑² t₂ ∶ ⇑ t ∶ ! u ∶ u ∶ A
⬆³_ {t₂ = t₂} {t} =
⬆ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
⬇³_ : ∀{x} {t₂ t : Tm x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ u ∶ A
→ Γ [ x ]⊢ ⇓² t₂ ∶ ⇓ t ∶ A
⬇³_ {t₂ = t₂} {t} =
⬇ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
★³_ : ∀{x} {t₂ t : Tm x} {A Γ}
→ Γ [ x ]⊢ t₂ ∶ t ∶ ⊥
→ Γ [ x ]⊢ ☆² t₂ ∶ ☆ t ∶ A
★³_ {t₂ = t₂} {t} =
★ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 4
𝒗⁴_ : ∀{x A Γ}
→ ⟨ 3 , A ⟩ ∈[ x ] Γ
→ Γ [ suc x ]⊢ 𝑣³ x ∶ 𝑣² x ∶ 𝑣 x ∶ A
𝒗⁴_ = 𝒗ⁿ_
𝝀⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ}
→ Γ , ⟨ 3 , A ⟩ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ B
→ Γ [ pred x ]⊢ 𝜆³ t₃ ∶ 𝜆² t₂ ∶ 𝜆 t ∶ (A ⊃ B)
𝝀⁴_ {t₃ = t₃} {t₂} {t} =
𝝀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
_∙⁴_ : ∀{x y} {t₃ t₂ t : Tm x} {s₃ s₂ s : Tm y} {A B Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ⊃ B) → Γ [ y ]⊢ s₃ ∶ s₂ ∶ s ∶ A
→ Γ [ x ⊔ y ]⊢ t₃ ∘³ s₃ ∶ t₂ ∘² s₂ ∶ t ∘ s ∶ B
_∙⁴_ {t₃ = t₃} {t₂} {t} {s₃} {s₂} {s} =
_∙ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []}
𝒑⁴⟨_,_⟩ : ∀{x y} {t₃ t₂ t : Tm x} {s₃ s₂ s : Tm y} {A B Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ A → Γ [ y ]⊢ s₃ ∶ s₂ ∶ s ∶ B
→ Γ [ x ⊔ y ]⊢ 𝑝³⟨ t₃ , s₃ ⟩ ∶ 𝑝²⟨ t₂ , s₂ ⟩ ∶ 𝑝⟨ t , s ⟩ ∶ (A ∧ B)
𝒑⁴⟨_,_⟩ {t₃ = t₃} {t₂} {t} {s₃} {s₂} {s} =
𝒑ⁿ⟨_,_⟩ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []}
𝝅₀⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₀³ t₃ ∶ 𝜋₀² t₂ ∶ 𝜋₀ t ∶ A
𝝅₀⁴_ {t₃ = t₃} {t₂} {t} =
𝝅₀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
𝝅₁⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ∧ B)
→ Γ [ x ]⊢ 𝜋₁³ t₃ ∶ 𝜋₁² t₂ ∶ 𝜋₁ t ∶ B
𝝅₁⁴_ {t₃ = t₃} {t₂} {t} =
𝝅₁ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
𝜾₀⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ A
→ Γ [ x ]⊢ 𝜄₀³ t₃ ∶ 𝜄₀² t₂ ∶ 𝜄₀ t ∶ (A ∨ B)
𝜾₀⁴_ {t₃ = t₃} {t₂} {t} =
𝜾₀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
𝜾₁⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A B Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ B
→ Γ [ x ]⊢ 𝜄₁³ t₃ ∶ 𝜄₁² t₂ ∶ 𝜄₁ t ∶ (A ∨ B)
𝜾₁⁴_ {t₃ = t₃} {t₂} {t} =
𝜾₁ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
𝒄⁴[_▷_∣_] : ∀{x y z} {t₃ t₂ t : Tm x} {s₃ s₂ s : Tm y} {u₃ u₂ u : Tm z} {A B C Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ (A ∨ B) → Γ , ⟨ 3 , A ⟩ [ y ]⊢ s₃ ∶ s₂ ∶ s ∶ C
→ Γ , ⟨ 3 , B ⟩ [ z ]⊢ u₃ ∶ u₂ ∶ u ∶ C
→ Γ [ x ⊔ pred y ⊔ pred z ]⊢ 𝑐³[ t₃ ▷ s₃ ∣ u₃ ] ∶ 𝑐²[ t₂ ▷ s₂ ∣ u₂ ] ∶ 𝑐[ t ▷ s ∣ u ] ∶ C
𝒄⁴[_▷_∣_] {t₃ = t₃} {t₂} {t} {s₃} {s₂} {s} {u₃} {u₂} {u} =
𝒄ⁿ[_▷_∣_] {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []}
{𝐮 = u₃ ∷ u₂ ∷ u ∷ []}
⬆⁴_ : ∀{x} {t₃ t₂ t : Tm x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ u ∶ A
→ Γ [ x ]⊢ ⇑³ t₃ ∶ ⇑² t₂ ∶ ⇑ t ∶ ! u ∶ u ∶ A
⬆⁴_ {t₃ = t₃} {t₂} {t} =
⬆ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
⬇⁴_ : ∀{x} {t₃ t₂ t : Tm x} {u : Tm x} {A Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ u ∶ A
→ Γ [ x ]⊢ ⇓³ t₃ ∶ ⇓² t₂ ∶ ⇓ t ∶ A
⬇⁴_ {t₃ = t₃} {t₂} {t} =
⬇ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
★⁴_ : ∀{x} {t₃ t₂ t : Tm x} {A Γ}
→ Γ [ x ]⊢ t₃ ∶ t₂ ∶ t ∶ ⊥
→ Γ [ x ]⊢ ☆³ t₃ ∶ ☆² t₂ ∶ ☆ t ∶ A
★⁴_ {t₃ = t₃} {t₂} {t} =
★ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
-- --------------------------------------------------------------------------
--
-- Quotation
quot : ∀{x B Γ} → Γ [ x ]⊢ B → Tm x
quot (𝒗ⁿ_ {n} {x} i) = 𝑣[ suc n ] x
quot (𝝀ⁿ_ {n} 𝒟) = 𝜆[ suc n ] quot 𝒟
quot (_∙ⁿ_ {n} 𝒟 𝒞) = quot 𝒟 ∘[ suc n ] quot 𝒞
quot (𝒑ⁿ⟨_,_⟩ {n} 𝒟 𝒞) = 𝑝[ suc n ]⟨ quot 𝒟 , quot 𝒞 ⟩
quot (𝝅₀ⁿ_ {n} 𝒟) = 𝜋₀[ suc n ] quot 𝒟
quot (𝝅₁ⁿ_ {n} 𝒟) = 𝜋₁[ suc n ] quot 𝒟
quot (𝜾₀ⁿ_ {n} 𝒟) = 𝜄₀[ suc n ] quot 𝒟
quot (𝜾₁ⁿ_ {n} 𝒟) = 𝜄₁[ suc n ] quot 𝒟
quot (𝒄ⁿ[_▷_∣_] {n} 𝒟 𝒞 ℰ) = 𝑐[ suc n ][ quot 𝒟 ▷ quot 𝒞 ∣ quot ℰ ]
quot (⬆ⁿ_ {n} 𝒟) = ⇑[ suc n ] quot 𝒟
quot (⬇ⁿ_ {n} 𝒟) = ⇓[ suc n ] quot 𝒟
quot (★ⁿ_ {n} 𝒟) = ☆[ suc n ] quot 𝒟
-- --------------------------------------------------------------------------
--
-- Internalisation (theorem 1, p. 29 [1]; lemma 5.4, pp. 9–10 [2])
-- A , A₂ , … , Aₘ ⇒
-- x ∶ A , x₂ ∶ A₂ , … , xₘ ∶ Aₘ
prefix : Cx → Cx
prefix ∅ = ∅
prefix (Γ , ⟨ n , A ⟩) = prefix Γ , ⟨ suc n , A ⟩
-- yₙ ∶ yₙ₋₁ ∶ … ∶ y ∶ A⁰ₖ ∈ A , A₂ , … , Aₘ ⇒
-- xₖ ∶ yₙ ∶ yₙ₋₁ ∶ … ∶ y ∶ A⁰ₖ ∈ x ∶ A, x₂ ∶ A₂ , … , xₘ ∶ Aₘ
int∈ : ∀{n x A Γ}
→ ⟨ n , A ⟩ ∈[ x ] Γ
→ ⟨ suc n , A ⟩ ∈[ x ] prefix Γ
int∈ 𝐙 = 𝐙
int∈ (𝐒 i) = 𝐒 (int∈ i)
-- A , A₂ , … , Aₘ ⊢ B ⇒
-- x ∶ A , x₂ ∶ A₂ , … xₘ ∶ Aₘ ⊢ t (x , x₂ , … , xₘ) ∶ B
int⊢ : ∀{x B Γ}
→ (𝒟 : Γ [ x ]⊢ B)
→ prefix Γ [ x ]⊢ quot 𝒟 ∶ B
int⊢ (𝒗ⁿ_ i) = 𝒗ⁿ int∈ i
int⊢ (𝝀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
_∙ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} (int⊢ 𝒟) (int⊢ 𝒞)
int⊢ (𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
𝒑ⁿ⟨_,_⟩ {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} (int⊢ 𝒟) (int⊢ 𝒞)
int⊢ (𝝅₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (𝝅₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₁ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (𝜾₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (𝜾₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₁ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (𝒄ⁿ[_▷_∣_] {𝐭 = 𝐭} {𝐬 = 𝐬} {𝐮 = 𝐮} 𝒟 𝒞 ℰ) =
𝒄ⁿ[_▷_∣_] {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬}
{𝐮 = quot ℰ ∷ 𝐮} (int⊢ 𝒟) (int⊢ 𝒞)
(int⊢ ℰ)
int⊢ (⬆ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬆ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (⬇ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬇ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (★ⁿ_ {𝐭 = 𝐭} 𝒟) = ★ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
-- --------------------------------------------------------------------------
--
-- Weakening
wk∈ : ∀{x A Δ}
→ (Γ : Cx) → A ∈[ x ] (∅ „ Γ)
→ A ∈[ x ] (Δ „ Γ)
wk∈ ∅ ()
wk∈ (Γ , A) 𝐙 = 𝐙
wk∈ (Γ , A) (𝐒 i) = 𝐒 (wk∈ Γ i)
wk⊢ : ∀{x A Δ}
→ (Γ : Cx) → ∅ „ Γ [ x ]⊢ A
→ Δ „ Γ [ x ]⊢ A
wk⊢ Γ (𝒗ⁿ_ i) = 𝒗ⁿ wk∈ Γ i
wk⊢ Γ (𝝀ⁿ_ {n} {𝐭 = 𝐭} {A} 𝒟) = 𝝀ⁿ_ {𝐭 = 𝐭} (wk⊢ (Γ , ⟨ n , A ⟩) 𝒟)
wk⊢ Γ (_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} (wk⊢ Γ 𝒟) (wk⊢ Γ 𝒞)
wk⊢ Γ (𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} (wk⊢ Γ 𝒟) (wk⊢ Γ 𝒞)
wk⊢ Γ (𝝅₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₀ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (𝝅₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝝅₁ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (𝜾₀ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₀ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (𝜾₁ⁿ_ {𝐭 = 𝐭} 𝒟) = 𝜾₁ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (𝒄ⁿ[_▷_∣_] {n} {𝐭 = 𝐭} {𝐬} {𝐮} {A} {B} 𝒟 𝒞 ℰ) =
𝒄ⁿ[_▷_∣_] {𝐭 = 𝐭} {𝐬 = 𝐬}
{𝐮 = 𝐮} (wk⊢ Γ 𝒟) (wk⊢ (Γ , ⟨ n , A ⟩) 𝒞)
(wk⊢ (Γ , ⟨ n , B ⟩) ℰ)
wk⊢ Γ (⬆ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬆ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (⬇ⁿ_ {𝐭 = 𝐭} 𝒟) = ⬇ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (★ⁿ_ {𝐭 = 𝐭} 𝒟) = ★ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
-- --------------------------------------------------------------------------
--
-- Constructive necessitation (corollary 5.5, p. 10 [2])
nec : ∀{A}
→ (𝒟 : ∅ [ 0 ]⊢ A)
→ ⊩ quot 𝒟 ∶ A
nec 𝒟 = wk⊢ ∅ (int⊢ 𝒟)
-- --------------------------------------------------------------------------
--
-- Examples
-- Some theorems of propositional logic
module PL where
I : ∀{A}
→ ⊩ A ⊃ A
I = 𝝀 𝒗 𝟎
K : ∀{A B}
→ ⊩ A ⊃ B ⊃ A
K = 𝝀 𝝀 𝒗 𝟏
S : ∀{A B C}
→ ⊩ (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C
S = 𝝀 𝝀 𝝀 (𝒗 𝟐 ∙ 𝒗 𝟎) ∙ (𝒗 𝟏 ∙ 𝒗 𝟎)
X1 : ∀{A B}
→ ⊩ A ⊃ B ⊃ A ∧ B
X1 = 𝝀 𝝀 𝒑⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩
-- Some derived theorems
module PLExamples where
-- □ (A ⊃ A)
I² : ∀{A}
→ ⊩ 𝜆 𝑣 0 ∶ (A ⊃ A)
I² = nec PL.I
-- □ □ (A ⊃ A)
I³ : ∀{A}
→ ⊩ 𝜆² 𝑣² 0 ∶ 𝜆 𝑣 0 ∶ (A ⊃ A)
I³ = nec I²
-- □ (A ⊃ B ⊃ A)
K² : ∀{A B}
→ ⊩ 𝜆 𝜆 𝑣 1 ∶ (A ⊃ B ⊃ A)
K² = nec PL.K
-- □ □ (A ⊃ B ⊃ A)
K³ : ∀{A B}
→ ⊩ 𝜆² 𝜆² 𝑣² 1 ∶ 𝜆 𝜆 𝑣 1 ∶ (A ⊃ B ⊃ A)
K³ = nec K²
-- □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S² : ∀{A B C}
→ ⊩ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S² = nec PL.S
-- □ □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S³ : ∀{A B C}
→ ⊩ 𝜆² 𝜆² 𝜆² (𝑣² 2 ∘² 𝑣² 0) ∘² (𝑣² 1 ∘² 𝑣² 0)
∶ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S³ = nec S²
-- Some theorems of modal logic S4
module S4 where
-- □ (A ⊃ B) ⊃ □ A ⊃ □ B
K : ∀{A B}
→ ⊩ (𝑣 1 ∶ (A ⊃ B)) ⊃ 𝑣 0 ∶ A ⊃ (𝑣 1 ∘ 𝑣 0) ∶ B
K = 𝝀 𝝀 (𝒗 𝟏 ∙² 𝒗 𝟎)
-- □ A ⊃ A
T : ∀{A}
→ ⊩ 𝑣 0 ∶ A ⊃ A
T = 𝝀 ⬇ 𝒗 𝟎
-- □ A ⊃ □ □ A
#4 : ∀{A}
→ ⊩ 𝑣 0 ∶ A ⊃ ! 𝑣 0 ∶ 𝑣 0 ∶ A
#4 = 𝝀 ⬆ 𝒗 𝟎
-- □ A ⊃ □ B ⊃ □ □ (A ∧ B)
X1 : ∀{A B}
→ ⊩ 𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)
X1 = 𝝀 𝝀 ⬆ 𝒑²⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩
-- □ A ⊃ □ B ⊃ □ (A ∧ B)
X2 : ∀{A B}
→ ⊩ 𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)
X2 = 𝝀 𝝀 𝒑²⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩
-- □ A ∧ □ B ⊃ □ □ (A ∧ B)
{- X3 : ∀{A B}
→ ⊩ 𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)
X3 = {!!} -- 𝝀 ⬆ 𝒑²⟨ 𝝅₀ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟎 ⟩-}
-- □ A ∧ □ B ⊃ □ (A ∧ B)
X4 : ∀{A B}
→ ⊩ 𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B)
X4 = 𝝀 {!𝒑²⟨ ? , ? ⟩!}
-- 𝝀 𝒑²⟨ 𝝅₀ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟎 ⟩
-- Some more derived theorems
module S4Examples where
-- □ (□ (A ⊃ B) ⊃ □ A ⊃ □ B)
K² : ∀{A B}
→ ⊩ 𝜆 𝜆 𝑣 1 ∘² 𝑣 0
∶ (𝑣 1 ∶ (A ⊃ B) ⊃ 𝑣 0 ∶ A ⊃ (𝑣 1 ∘ 𝑣 0) ∶ B)
K² = nec S4.K
-- --------------------------------------------------------------------------
--
-- Original examples
-- Example 1 (p. 28 [1])
module Example1 where
-- □ (□ A ⊃ A)
E11 : ∀{A}
→ ⊩ 𝜆 ⇓ 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ A)
E11 = nec S4.T
-- □ (□ A ⊃ □ □ A)
E12 : ∀{A}
→ ⊩ 𝜆 ⇑ 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ ! 𝑣 0 ∶ 𝑣 0 ∶ A)
E12 = nec S4.#4
-- □ □ (A ⊃ B ⊃ A ∧ B)
E13 : ∀{A B}
→ ⊩ 𝜆² 𝜆² 𝑝²⟨ 𝑣² 1 , 𝑣² 0 ⟩ ∶ 𝜆 𝜆 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ⊃ B ⊃ A ∧ B)
E13 = nec (nec PL.X1)
-- □ (□ A ⊃ □ B ⊃ □ □ (A ∧ B))
E14 : ∀{A B}
→ ⊩ 𝜆 𝜆 ⇑ 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩
∶ (𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B))
E14 = nec S4.X1
-- Some more variants of example 1
module Example1a where
-- □ (□ A ⊃ □ B ⊃ □ (A ∧ B))
E14a : ∀{A B}
→ ⊩ 𝜆 𝜆 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (𝑣 1 ∶ A ⊃ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B))
E14a = nec S4.X2
-- □ (□ A ∧ □ B ⊃ □ □ (A ∧ B))
{- E14b : ∀{A B}
→ ⊩ 𝜆 ⇑ 𝑝²⟨ 𝜋₀ 𝑣 0 , 𝜋₁ 𝑣 0 ⟩
∶ (𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ ! 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B))
E14b = nec S4.X3
-- □ (□ A ∧ □ B ⊃ □ (A ∧ B))
E14c : ∀{A B}
→ ⊩ 𝜆 𝑝²⟨ 𝜋₀ 𝑣 0 , 𝜋₁ 𝑣 0 ⟩ ∶ (𝑣 1 ∶ A ∧ 𝑣 0 ∶ B ⊃ 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩ ∶ (A ∧ B))
E14c = nec S4.X4-}
-- Example 2 (pp. 31–32 [1])
module Example2 where
E2 : ∀{A}
→ ⊩ 𝜆² ⇓² ⇑² 𝑣² 0 ∶ 𝜆 ⇓ ⇑ 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ 𝑣 0 ∶ A)
E2 = 𝝀³ ⬇³ ⬆³ 𝒗³ 𝟎
E2a : ∀{A}
→ ⊩ 𝜆² 𝑣² 0 ∶ 𝜆 𝑣 0 ∶ (𝑣 0 ∶ A ⊃ 𝑣 0 ∶ A)
E2a = 𝝀³ 𝒗³ 𝟎
-- --------------------------------------------------------------------------
--
-- Additional examples
-- De Morgan’s laws
module DeMorgan where
-- (A ⊃ ⊥) ∧ (B ⊃ ⊥) ⫗ (A ∨ B) ⊃ ⊥
L1 : ∀{A B}
→ ⊩ ¬ A ∧ ¬ B ⫗ ¬ (A ∨ B)
L1 = 𝒑⟨ 𝝀 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝝅₀ 𝒗 𝟐 ∙ 𝒗 𝟎 ∣ 𝝅₁ 𝒗 𝟐 ∙ 𝒗 𝟎 ]
, 𝝀 𝒑⟨ 𝝀 𝒗 𝟏 ∙ 𝜾₀ 𝒗 𝟎 , 𝝀 𝒗 𝟏 ∙ 𝜾₁ 𝒗 𝟎 ⟩ ⟩
-- (A ⊃ ⊥) ∨ (B ⊃ ⊥) ⊃ (A ⊃ ⊥) ∧ B
L2 : ∀{A B}
→ ⊩ ¬ A ∨ ¬ B ⊃ ¬ (A ∧ B)
L2 = 𝝀 𝝀 𝒄[ 𝒗 𝟏 ▷ 𝒗 𝟎 ∙ 𝝅₀ 𝒗 𝟏 ∣ 𝒗 𝟎 ∙ 𝝅₁ 𝒗 𝟏 ]
-- Explosions and contradictions
module ExploCon where
X1 : ∀{A}
→ ⊩ ⊥ ⊃ A
X1 = 𝝀 ★ 𝒗 𝟎
-- □ (⊥ ⊃ A)
X1² : ∀{A}
→ ⊩ 𝜆 ☆ 𝑣 0 ∶ (⊥ ⊃ A)
X1² = nec X1
-- □ ⊥ ⊃ □ A
X2 : ∀{A}
→ ⊩ 𝑣 0 ∶ ⊥ ⊃ ☆ 𝑣 0 ∶ A
X2 = 𝝀 ★² 𝒗 𝟎
X3 : ∀{A}
→ ⊩ ¬ A ⊃ A ⊃ ⊥
X3 = 𝝀 𝝀 𝒗 𝟏 ∙ 𝒗 𝟎
-- □ (¬ A) ⊃ □ A ⊃ □ ⊥
X4 : ∀{A}
→ ⊩ 𝑣 1 ∶ (¬ A) ⊃ 𝑣 0 ∶ A ⊃ 𝑣 1 ∘ 𝑣 0 ∶ ⊥
X4 = 𝝀 𝝀 𝒗 𝟏 ∙² 𝒗 𝟎
-- □ (¬ A) ⊃ □ A ⊃ □ □ ⊥
X5 : ∀{A}
→ ⊩ 𝑣 1 ∶ (¬ A) ⊃ 𝑣 0 ∶ A ⊃ ! (𝑣 1 ∘ 𝑣 0) ∶ 𝑣 1 ∘ 𝑣 0 ∶ ⊥
X5 = 𝝀 𝝀 ⬆ 𝒗 𝟏 ∙² 𝒗 𝟎
-- --------------------------------------------------------------------------
--
-- Further examples
module Idempotence where
⊃-idem : ∀{A}
→ ⊩ A ⊃ A ⫗ ⊤
⊃-idem = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎
, 𝝀 𝝀 𝒗 𝟎 ⟩
∧-idem : ∀{A}
→ ⊩ A ∧ A ⫗ A
∧-idem = 𝒑⟨ 𝝀 𝝅₀ 𝒗 𝟎
, 𝝀 𝒑⟨ 𝒗 𝟎 , 𝒗 𝟎 ⟩ ⟩
∨-idem : ∀{A}
→ ⊩ A ∨ A ⫗ A
∨-idem = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒗 𝟎 ∣ 𝒗 𝟎 ]
, 𝝀 𝜾₀ 𝒗 𝟎 ⟩
module Commutativity where
∧-comm : ∀{A B}
→ ⊩ A ∧ B ⫗ B ∧ A
∧-comm = 𝒑⟨ 𝝀 𝒑⟨ 𝝅₁ 𝒗 𝟎 , 𝝅₀ 𝒗 𝟎 ⟩
, 𝝀 𝒑⟨ 𝝅₁ 𝒗 𝟎 , 𝝅₀ 𝒗 𝟎 ⟩ ⟩
∨-comm : ∀{A B}
→ ⊩ A ∨ B ⫗ B ∨ A
∨-comm = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝜾₁ 𝒗 𝟎 ∣ 𝜾₀ 𝒗 𝟎 ]
, 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝜾₁ 𝒗 𝟎 ∣ 𝜾₀ 𝒗 𝟎 ] ⟩
module Associativity where
∧-assoc : ∀{A B C}
→ ⊩ A ∧ (B ∧ C) ⫗ (A ∧ B) ∧ C
∧-assoc = 𝒑⟨ 𝝀 𝒑⟨ 𝒑⟨ 𝝅₀ 𝒗 𝟎 , 𝝅₀ 𝝅₁ 𝒗 𝟎 ⟩ , 𝝅₁ 𝝅₁ 𝒗 𝟎 ⟩
, 𝝀 𝒑⟨ 𝝅₀ 𝝅₀ 𝒗 𝟎 , 𝒑⟨ 𝝅₁ 𝝅₀ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟎 ⟩ ⟩ ⟩
∨-assoc : ∀{A B C}
→ ⊩ A ∨ (B ∨ C) ⫗ (A ∨ B) ∨ C
∨-assoc = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝜾₀ 𝜾₀ 𝒗 𝟎 ∣ 𝒄[ 𝒗 𝟎 ▷ 𝜾₀ 𝜾₁ 𝒗 𝟎 ∣ 𝜾₁ 𝒗 𝟎 ] ]
, 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒄[ 𝒗 𝟎 ▷ 𝜾₀ 𝒗 𝟎 ∣ 𝜾₁ 𝜾₀ 𝒗 𝟎 ] ∣ 𝜾₁ 𝜾₁ 𝒗 𝟎 ] ⟩
module Distributivity where
⊃-dist-∧ : ∀{A B C}
→ ⊩ A ⊃ (B ∧ C) ⫗ (A ⊃ B) ∧ (A ⊃ C)
⊃-dist-∧ = 𝒑⟨ 𝝀 𝒑⟨ 𝝀 𝝅₀ (𝒗 𝟏 ∙ 𝒗 𝟎) , 𝝀 𝝅₁ (𝒗 𝟏 ∙ 𝒗 𝟎) ⟩
, 𝝀 𝝀 𝒑⟨ 𝝅₀ 𝒗 𝟏 ∙ 𝒗 𝟎 , 𝝅₁ 𝒗 𝟏 ∙ 𝒗 𝟎 ⟩ ⟩
∧-dist-∨ : ∀{A B C}
→ ⊩ A ∧ (B ∨ C) ⫗ (A ∧ B) ∨ (A ∧ C)
∧-dist-∨ = 𝒑⟨ 𝝀 𝒄[ 𝝅₁ 𝒗 𝟎 ▷ 𝜾₀ 𝒑⟨ 𝝅₀ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ∣ 𝜾₁ 𝒑⟨ 𝝅₀ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ]
, 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒑⟨ 𝝅₀ 𝒗 𝟎 , 𝜾₀ 𝝅₁ 𝒗 𝟎 ⟩ ∣ 𝒑⟨ 𝝅₀ 𝒗 𝟎 , 𝜾₁ 𝝅₁ 𝒗 𝟎 ⟩ ] ⟩
∨-dist-∧ : ∀{A B C}
→ ⊩ A ∨ (B ∧ C) ⫗ (A ∨ B) ∧ (A ∨ C)
∨-dist-∧ = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒑⟨ 𝜾₀ 𝒗 𝟎 , 𝜾₀ 𝒗 𝟎 ⟩ ∣ 𝒑⟨ 𝜾₁ 𝝅₀ 𝒗 𝟎 , 𝜾₁ 𝝅₁ 𝒗 𝟎 ⟩ ]
, 𝝀 𝒄[ 𝝅₀ 𝒗 𝟎 ▷ 𝜾₀ 𝒗 𝟎 ∣ 𝒄[ 𝝅₁ 𝒗 𝟏 ▷ 𝜾₀ 𝒗 𝟎 ∣ 𝜾₁ 𝒑⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ] ] ⟩
module Untitled where
⊃-law : ∀{A B C}
→ ⊩ (A ⊃ B) ⊃ (B ⊃ C) ⊃ A ⊃ C
⊃-law = 𝝀 𝝀 𝝀 𝒗 𝟏 ∙ (𝒗 𝟐 ∙ 𝒗 𝟎)
⊃-∧-law : ∀{A B C}
→ ⊩ A ⊃ B ⊃ C ⫗ (A ∧ B) ⊃ C
⊃-∧-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟏 ∙ 𝝅₀ 𝒗 𝟎 ∙ 𝝅₁ 𝒗 𝟎
, 𝝀 𝝀 𝝀 𝒗 𝟐 ∙ 𝒑⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩ ⟩
∨-⊃-∧-law : ∀{A B C}
→ ⊩ (A ∨ B) ⊃ C ⫗ (A ⊃ C) ∧ (B ⊃ C)
∨-⊃-∧-law = 𝒑⟨ 𝝀 𝒑⟨ 𝝀 𝒗 𝟏 ∙ 𝜾₀ 𝒗 𝟎 , 𝝀 𝒗 𝟏 ∙ 𝜾₁ 𝒗 𝟎 ⟩
, 𝝀 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝝅₀ 𝒗 𝟐 ∙ 𝒗 𝟎 ∣ 𝝅₁ 𝒗 𝟐 ∙ 𝒗 𝟎 ] ⟩
module Trivial where
⊃-⊤-law : ∀{A}
→ ⊩ A ⊃ ⊤ ⫗ ⊤
⊃-⊤-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎
, 𝝀 𝝀 𝒗 𝟏 ⟩
⊤-⊃-law : ∀{A}
→ ⊩ ⊤ ⊃ A ⫗ A
⊤-⊃-law = 𝒑⟨ 𝝀 𝒗 𝟎 ∙ (𝝀 𝒗 𝟎)
, 𝝀 𝝀 𝒗 𝟏 ⟩
⊥-⊃-⊤-law : ∀{A}
→ ⊩ ⊥ ⊃ A ⫗ ⊤
⊥-⊃-⊤-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎
, 𝝀 𝝀 ★ 𝒗 𝟎 ⟩
∧-⊥-law : ∀{A}
→ ⊩ A ∧ ⊥ ⫗ ⊥
∧-⊥-law = 𝒑⟨ 𝝀 𝝅₁ 𝒗 𝟎
, 𝝀 ★ 𝒗 𝟎 ⟩
∨-⊥-law : ∀{A}
→ ⊩ A ∨ ⊥ ⫗ A
∨-⊥-law = 𝒑⟨ 𝝀 𝒄[ 𝒗 𝟎 ▷ 𝒗 𝟎 ∣ ★ 𝒗 𝟎 ]
, 𝝀 𝜾₀ 𝒗 𝟎 ⟩
∧-⊤-law : ∀{A}
→ ⊩ A ∧ ⊤ ⫗ A
∧-⊤-law = 𝒑⟨ 𝝀 𝝅₀ 𝒗 𝟎
, 𝝀 𝒑⟨ 𝒗 𝟎 , 𝝀 𝒗 𝟎 ⟩ ⟩
∨-⊤-law : ∀{A}
→ ⊩ A ∨ ⊤ ⫗ ⊤
∨-⊤-law = 𝒑⟨ 𝝀 𝝀 𝒗 𝟎
, 𝝀 𝜾₁ 𝒗 𝟎 ⟩
-}