module A201602.Scratch-negation where
{-
{-
An implementation of the Alt-Artëmov system λ∞
==============================================
Work in progress.
For easy editing with Emacs agda-mode, add to your .emacs file:
'(agda-input-user-translations
(quote
(("i" "⊃") ("ii" "⫗") ("e" "⊢") ("ee" "⊩") ("n" "¬") (":." "∵")
("v" "𝑣")
("l" "𝜆") ("l2" "𝜆²") ("l3" "𝜆³") ("l4" "𝜆⁴") ("ln" "𝜆ⁿ")
("o" "∘") ("o2" "∘²") ("o3" "∘³") ("o4" "∘⁴") ("on" "∘ⁿ")
("p" "𝑝") ("p2" "𝑝²") ("p3" "𝑝³") ("p4" "𝑝⁴") ("pn" "𝑝ⁿ")
("pi" "𝜋")
("pi0" "𝜋₀") ("pi02" "𝜋₀²") ("pi03" "𝜋₀³") ("pi04" "𝜋₀⁴") ("pi0n" "𝜋₀ⁿ")
("pi1" "𝜋₁") ("pi12" "𝜋₁²") ("pi13" "𝜋₁³") ("pi14" "𝜋₁⁴") ("pi1n" "𝜋₁ⁿ")
("u" "⇑") ("u2" "⇑²") ("u3" "⇑³") ("u4" "⇑⁴") ("un" "⇑ⁿ")
("d" "⇓") ("d2" "⇓²") ("d3" "⇓³") ("d4" "⇓⁴") ("dn" "⇓ⁿ")
("x" "✴") ("x2" "✴²") ("x3" "✴³") ("x4" "✴⁴") ("xn" "✴ⁿ")
("b" "□")
("mv" "𝒗")
("ml" "𝝀") ("ml2" "𝝀²") ("ml3" "𝝀³") ("ml4" "𝝀⁴") ("mln" "𝝀ⁿ")
("mo" "∙") ("mo2" "∙²") ("mo3" "∙³") ("mo4" "∙⁴") ("mon" "∙ⁿ")
("mp" "𝒑") ("mp2" "𝒑²") ("mp3" "𝒑³") ("mp4" "𝒑⁴") ("mpn" "𝒑ⁿ")
("mpi" "𝝅")
("mpi0" "𝝅₀") ("mpi02" "𝝅₀²") ("mpi03" "𝝅₀³") ("mpi04" "𝝅₀⁴") ("mpi0n" "𝝅₀ⁿ")
("mpi1" "𝝅₁") ("mpi12" "𝝅₁²") ("mpi13" "𝝅₁³") ("mpi14" "𝝅₁⁴") ("mpi1n" "𝝅₁ⁿ")
("mu" "⬆") ("mu2" "⬆²") ("mu3" "⬆³") ("mu4" "⬆⁴") ("mun" "⬆ⁿ")
("md" "⬇") ("md2" "⬇²") ("md3" "⬇³") ("md4" "⬇⁴") ("mdn" "⬇ⁿ")
("mx" "✹") ("mx2" "✹²") ("mx3" "✹³") ("mx4" "✹⁴") ("mxn" "✹ⁿ")
("mb" "■")
("mS" "𝐒") ("mZ" "𝐙")
("m0" "𝟎") ("m1" "𝟏") ("m2" "𝟐") ("m3" "𝟑") ("m4" "𝟒")
("ss" "𝐬") ("ts" "𝐭") ("xs" "𝐱") ("ys" "𝐲")
("C" "𝒞") ("D" "𝒟")
("N" "ℕ"))))
-}
module AltArtemov where
open import Data.Nat using (ℕ ; zero ; suc)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import Data.Vec using (Vec ; [] ; _∷_ ; replicate)
infixl 9 !_ 𝑣_ 𝒗_
infixl 9 ✴_ ✴²_ ✴³_ ✴⁴_ ✴ⁿ_ ✹_ ✹²_ ✹³_ ✹⁴_ ✹ⁿ_
infixl 8 𝜋₀_ 𝜋₀²_ 𝜋₀³_ 𝜋₀⁴_ 𝜋₀ⁿ_ 𝝅₀_ 𝝅₀²_ 𝝅₀³_ 𝝅₀⁴_ 𝝅₀ⁿ_
infixl 8 𝜋₁_ 𝜋₁²_ 𝜋₁³_ 𝜋₁⁴_ 𝜋₁ⁿ_ 𝝅₁_ 𝝅₁²_ 𝝅₁³_ 𝝅₁⁴_ 𝝅₁ⁿ_
infixl 7 _∘_ _∘²_ _∘³_ _∘⁴_ _∘ⁿ_ _∙_ _∙²_ _∙³_ _∙⁴_ _∙ⁿ_
infixr 6 ⇑_ ⇑²_ ⇑³_ ⇑⁴_ ⇑ⁿ_ ⬆_ ⬆²_ ⬆³_ ⬆⁴_ ⬆ⁿ_
infixr 6 ⇓_ ⇓²_ ⇓³_ ⇓⁴_ ⇓ⁿ_ ⬇_ ⬇²_ ⬇³_ ⬇⁴_ ⬇ⁿ_
infixr 5 𝜆_ 𝜆²_ 𝜆³_ 𝜆⁴_ 𝜆ⁿ_ 𝝀_ 𝝀²_ 𝝀³_ 𝝀⁴_ 𝝀ⁿ_
infixr 4 _∶_ _∵_
infixr 3 ¬_
infixl 3 _∧_
infixl 2 _∨_ _,_ _„_
infixr 1 _⊃_ _⫗_
infixr 0 _⊢_ ⊩_
-- --------------------------------------------------------------------------
--
-- Untyped syntax
-- Variables
Var : Set
Var = ℕ
-- Term constructors
data Tm : Set where
-- Explosion (⊥E) at level n
✴[_]_ : ℕ → Tm → Tm
-- Variable reference
𝑣_ : Var → Tm
-- Abstraction (⊃I) at level n
𝜆[_]_ : ℕ → Tm → Tm
-- Application (⊃E) at level n
_∘[_]_ : Tm → ℕ → Tm → Tm
-- Pairing (∧I) at level n
𝑝[_]⟨_,_⟩ : ℕ → Tm → Tm → Tm
-- 0th projection (∧E₀) at level n
𝜋₀[_]_ : ℕ → Tm → Tm
-- 1st projection (∧E₁) at level n
𝜋₁[_]_ : ℕ → Tm → Tm
-- Artëmov’s “proof checker”
!_ : Tm → Tm
-- Reification at level n
⇑[_]_ : ℕ → Tm → Tm
-- Reflection at level n
⇓[_]_ : ℕ → Tm → Tm
-- Type constructors
data Ty : Set where
-- Falsehood
⊥ : Ty
-- Implication
_⊃_ : Ty → Ty → Ty
-- Conjunction
_∧_ : Ty → Ty → Ty
-- Explicit provability
_∶_ : Tm → Ty → Ty
-- --------------------------------------------------------------------------
--
-- Example types
-- Truth
⊤ : Ty
⊤ = ⊥ ⊃ ⊥
-- Negation
¬_ : Ty → Ty
¬ A = A ⊃ ⊥
-- Disjunction
_∨_ : Ty → Ty → Ty
A ∨ B = ¬ A ⊃ B
-- Equivalence
_⫗_ : Ty → Ty → Ty
A ⫗ B = (A ⊃ B) ∧ (B ⊃ A)
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 1
✴_ : Tm → Tm
✴ t = ✴[ 1 ] t
𝜆_ : Tm → Tm
𝜆 t = 𝜆[ 1 ] t
_∘_ : Tm → Tm → Tm
t ∘ s = t ∘[ 1 ] s
𝑝⟨_,_⟩ : Tm → Tm → Tm
𝑝⟨ t , s ⟩ = 𝑝[ 1 ]⟨ t , s ⟩
𝜋₀_ : Tm → Tm
𝜋₀ t = 𝜋₀[ 1 ] t
𝜋₁_ : Tm → Tm
𝜋₁ t = 𝜋₁[ 1 ] t
⇑_ : Tm → Tm
⇑ t = ⇑[ 1 ] t
⇓_ : Tm → Tm
⇓ t = ⇓[ 1 ] t
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 2
✴²_ : Tm → Tm
✴² t = ✴[ 2 ] t
𝜆²_ : Tm → Tm
𝜆² t₂ = 𝜆[ 2 ] t₂
_∘²_ : Tm → Tm → Tm
t₂ ∘² s₂ = t₂ ∘[ 2 ] s₂
𝑝²⟨_,_⟩ : Tm → Tm → Tm
𝑝²⟨ t₂ , s₂ ⟩ = 𝑝[ 2 ]⟨ t₂ , s₂ ⟩
𝜋₀²_ : Tm → Tm
𝜋₀² t₂ = 𝜋₀[ 2 ] t₂
𝜋₁²_ : Tm → Tm
𝜋₁² t₂ = 𝜋₁[ 2 ] t₂
⇑²_ : Tm → Tm
⇑² t₂ = ⇑[ 2 ] t₂
⇓²_ : Tm → Tm
⇓² t₂ = ⇓[ 2 ] t₂
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 3
✴³_ : Tm → Tm
✴³ t = ✴[ 3 ] t
𝜆³_ : Tm → Tm
𝜆³ t₃ = 𝜆[ 3 ] t₃
_∘³_ : Tm → Tm → Tm
t₃ ∘³ s₃ = t₃ ∘[ 3 ] s₃
𝑝³⟨_,_⟩ : Tm → Tm → Tm
𝑝³⟨ t₃ , s₃ ⟩ = 𝑝[ 3 ]⟨ t₃ , s₃ ⟩
𝜋₀³_ : Tm → Tm
𝜋₀³ t₃ = 𝜋₀[ 3 ] t₃
𝜋₁³_ : Tm → Tm
𝜋₁³ t₃ = 𝜋₁[ 3 ] t₃
⇑³_ : Tm → Tm
⇑³ t₃ = ⇑[ 3 ] t₃
⇓³_ : Tm → Tm
⇓³ t₃ = ⇓[ 3 ] t₃
-- --------------------------------------------------------------------------
--
-- Notation for term constructors at level 4
✴⁴_ : Tm → Tm
✴⁴ t = ✴[ 4 ] t
𝜆⁴_ : Tm → Tm
𝜆⁴ t₄ = 𝜆[ 4 ] t₄
_∘⁴_ : Tm → Tm → Tm
t₄ ∘⁴ s₄ = t₄ ∘[ 4 ] s₄
𝑝⁴⟨_,_⟩ : Tm → Tm → Tm
𝑝⁴⟨ t₄ , s₄ ⟩ = 𝑝[ 4 ]⟨ t₄ , s₄ ⟩
𝜋₀⁴_ : Tm → Tm
𝜋₀⁴ t₄ = 𝜋₀[ 4 ] t₄
𝜋₁⁴_ : Tm → Tm
𝜋₁⁴ t₄ = 𝜋₁[ 4 ] t₄
⇑⁴_ : Tm → Tm
⇑⁴ t₄ = ⇑[ 4 ] t₄
⇓⁴_ : Tm → Tm
⇓⁴ t₄ = ⇓[ 4 ] t₄
-- --------------------------------------------------------------------------
--
-- Vector notation for type assertions at level n (p. 27 [1])
map# : ∀{n} {X Y : Set}
→ (ℕ → X → Y) → Vec X n → Vec Y n
map# {zero} f [] = []
map# {suc n} f (x ∷ 𝐱) = f (suc n) x ∷ map# f 𝐱
zipWith# : ∀{n} {X Y Z : Set}
→ (ℕ → X → Y → Z) → Vec X n → Vec Y n → Vec Z n
zipWith# {zero} f [] [] = []
zipWith# {suc n} f (x ∷ 𝐱) (y ∷ 𝐲) = f (suc n) x y ∷ zipWith# f 𝐱 𝐲
-- Term vectors
Tms : ℕ → Set
Tms = Vec Tm
-- tₙ ∶ tₙ₋₁ ∶ … ∶ t ∶ A
_∵_ : ∀{n} → Tms n → Ty → Ty
[] ∵ A = A
(x ∷ 𝐭) ∵ A = x ∶ 𝐭 ∵ A
-- ✴ⁿ tₙ ∶ ✴ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ✴ t
✴ⁿ_ : ∀{n} → Tms n → Tms n
✴ⁿ_ = map# ✴[_]_
-- 𝑣 x ∶ 𝑣 x ∶ … ∶ 𝑣 x
𝑣[_]_ : (n : ℕ) → Var → Tms n
𝑣[ n ] x = replicate {n = n} (𝑣 x)
-- 𝜆ⁿ tₙ ∶ 𝜆ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜆 t
𝜆ⁿ_ : ∀{n} → Tms n → Tms n
𝜆ⁿ_ = map# 𝜆[_]_
-- tₙ ∘ⁿ sₙ ∶ tₙ₋₁ ∘ⁿ⁻¹ ∶ sₙ₋₁ ∶ … ∶ t ∘ s
_∘ⁿ_ : ∀{n} → Tms n → Tms n → Tms n
_∘ⁿ_ = zipWith# (λ n t s → t ∘[ n ] s)
-- 𝑝ⁿ⟨ tₙ , sₙ ⟩ ∶ 𝑝ⁿ⁻¹⟨ tₙ₋₁ , sₙ₋₁ ⟩ ∶ … ∶ p⟨ t , s ⟩
𝑝ⁿ⟨_,_⟩ : ∀{n} → Tms n → Tms n → Tms n
𝑝ⁿ⟨_,_⟩ = zipWith# 𝑝[_]⟨_,_⟩
-- 𝜋₀ⁿ tₙ ∶ 𝜋₀ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜋₀ t
𝜋₀ⁿ_ : ∀{n} → Tms n → Tms n
𝜋₀ⁿ_ = map# 𝜋₀[_]_
-- 𝜋₁ⁿ tₙ ∶ 𝜋₁ⁿ⁻¹ tₙ₋₁ ∶ … ∶ 𝜋₁ t
𝜋₁ⁿ_ : ∀{n} → Tms n → Tms n
𝜋₁ⁿ_ = map# 𝜋₁[_]_
-- ⇑ⁿ tₙ ∶ ⇑ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ⇑ t
⇑ⁿ_ : ∀{n} → Tms n → Tms n
⇑ⁿ_ = map# ⇑[_]_
-- ⇓ⁿ tₙ ∶ ⇑ⁿ⁻¹ tₙ₋₁ ∶ … ∶ ⇑ t
⇓ⁿ_ : ∀{n} → Tms n → Tms n
⇓ⁿ_ = map# ⇓[_]_
-- --------------------------------------------------------------------------
--
-- Typed syntax
-- Hypotheses
Hyp : Set
Hyp = ℕ × Ty
-- Contexts
data Cx : Set where
∅ : Cx
_,_ : Cx → Hyp → Cx
_„_ : Cx → Cx → Cx
Γ „ ∅ = Γ
Γ „ (Δ , A) = Γ „ Δ , A
-- Context membership evidence
data _∈[_]_ : Hyp → ℕ → Cx → Set where
𝐙 : ∀{A Γ}
→ A ∈[ zero ] (Γ , A)
𝐒_ : ∀{A B x Γ}
→ A ∈[ x ] Γ
→ A ∈[ suc x ] (Γ , B)
-- Typed terms
data _⊢_ (Γ : Cx) : Ty → Set where
-- Explosion (⊥E)
✹ⁿ_ : ∀{n A} {𝐭 : Tms n}
→ Γ ⊢ 𝐭 ∵ ⊥
→ Γ ⊢ ✴ⁿ 𝐭 ∵ A
-- Variable reference
𝒗_ : ∀{n x A}
→ ⟨ n , A ⟩ ∈[ x ] Γ
→ Γ ⊢ 𝑣[ n ] x ∵ A
-- Abstraction (⊃I) at level n
𝝀ⁿ_ : ∀{n} {𝐭 : Tms n} {A B}
→ Γ , ⟨ n , A ⟩ ⊢ 𝐭 ∵ B
→ Γ ⊢ 𝜆ⁿ 𝐭 ∵ (A ⊃ B)
-- Application (⊃E) at level n
_∙ⁿ_ : ∀{n} {𝐭 𝐬 : Tms n} {A B}
→ Γ ⊢ 𝐭 ∵ (A ⊃ B) → Γ ⊢ 𝐬 ∵ A
→ Γ ⊢ 𝐭 ∘ⁿ 𝐬 ∵ B
-- Pairing (∧I) at level n
𝒑ⁿ⟨_,_⟩ : ∀{n} {𝐭 𝐬 : Tms n} {A B}
→ Γ ⊢ 𝐭 ∵ A → Γ ⊢ 𝐬 ∵ B
→ Γ ⊢ 𝑝ⁿ⟨ 𝐭 , 𝐬 ⟩ ∵ (A ∧ B)
-- 0th projection (∧E₀) at level n
𝝅₀ⁿ_ : ∀{n} {𝐭 : Tms n} {A B}
→ Γ ⊢ 𝐭 ∵ (A ∧ B)
→ Γ ⊢ 𝜋₀ⁿ 𝐭 ∵ A
-- 1st projection (∧E₁) at level n
𝝅₁ⁿ_ : ∀{n} {𝐭 : Tms n} {A B}
→ Γ ⊢ 𝐭 ∵ (A ∧ B)
→ Γ ⊢ 𝜋₁ⁿ 𝐭 ∵ B
-- Reification at level n
⬆ⁿ_ : ∀{n} {𝐭 : Tms n} {u A}
→ Γ ⊢ 𝐭 ∵ (u ∶ A)
→ Γ ⊢ ⇑ⁿ 𝐭 ∵ (! u ∶ u ∶ A)
-- Reflection at level n
⬇ⁿ_ : ∀{n} {𝐭 : Tms n} {u A}
→ Γ ⊢ 𝐭 ∵ (u ∶ A)
→ Γ ⊢ ⇓ⁿ 𝐭 ∵ A
⊩_ : Ty → Set
⊩ A = ∀{Γ} → Γ ⊢ A
-- --------------------------------------------------------------------------
--
-- Notation for context membership evidence
𝟎 : ∀{A Γ}
→ A ∈[ 0 ] (Γ , A)
𝟎 = 𝐙
𝟏 : ∀{A B Γ}
→ A ∈[ 1 ] (Γ , A , B)
𝟏 = 𝐒 𝟎
𝟐 : ∀{A B C Γ}
→ A ∈[ 2 ] (Γ , A , B , C)
𝟐 = 𝐒 𝟏
𝟑 : ∀{A B C D Γ}
→ A ∈[ 3 ] (Γ , A , B , C , D)
𝟑 = 𝐒 𝟐
𝟒 : ∀{A B C D E Γ}
→ A ∈[ 4 ] (Γ , A , B , C , D , E)
𝟒 = 𝐒 𝟑
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 1
✹_ : ∀{A Γ}
→ Γ ⊢ ⊥
→ Γ ⊢ A
✹_ = ✹ⁿ_ {𝐭 = []}
𝝀_ : ∀{A B Γ}
→ Γ , ⟨ 0 , A ⟩ ⊢ B
→ Γ ⊢ A ⊃ B
𝝀_ = 𝝀ⁿ_ {𝐭 = []}
_∙_ : ∀{A B Γ}
→ Γ ⊢ A ⊃ B → Γ ⊢ A
→ Γ ⊢ B
_∙_ = _∙ⁿ_ {𝐭 = []} {𝐬 = []}
𝒑⟨_,_⟩ : ∀{A B Γ}
→ Γ ⊢ A → Γ ⊢ B
→ Γ ⊢ A ∧ B
𝒑⟨_,_⟩ = 𝒑ⁿ⟨_,_⟩ {𝐭 = []} {𝐬 = []}
𝝅₀_ : ∀{A B Γ}
→ Γ ⊢ A ∧ B
→ Γ ⊢ A
𝝅₀_ = 𝝅₀ⁿ_ {𝐭 = []}
𝝅₁_ : ∀{A B Γ}
→ Γ ⊢ A ∧ B
→ Γ ⊢ B
𝝅₁_ = 𝝅₁ⁿ_ {𝐭 = []}
⬆_ : ∀{u A Γ}
→ Γ ⊢ u ∶ A
→ Γ ⊢ ! u ∶ u ∶ A
⬆_ = ⬆ⁿ_ {𝐭 = []}
⬇_ : ∀{u A Γ}
→ Γ ⊢ u ∶ A
→ Γ ⊢ A
⬇_ = ⬇ⁿ_ {𝐭 = []}
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 2
✹²_ : ∀{t A Γ}
→ Γ ⊢ t ∶ ⊥
→ Γ ⊢ ✴ t ∶ A
✹²_ {t} =
✹ⁿ_ {𝐭 = t ∷ []}
𝝀²_ : ∀{t A B Γ}
→ Γ , ⟨ 1 , A ⟩ ⊢ t ∶ B
→ Γ ⊢ 𝜆 t ∶ (A ⊃ B)
𝝀²_ {t} =
𝝀ⁿ_ {𝐭 = t ∷ []}
_∙²_ : ∀{t s A B Γ}
→ Γ ⊢ t ∶ (A ⊃ B) → Γ ⊢ s ∶ A
→ Γ ⊢ t ∘ s ∶ B
_∙²_ {t} {s} =
_∙ⁿ_ {𝐭 = t ∷ []} {𝐬 = s ∷ []}
𝒑²⟨_,_⟩ : ∀{t s A B Γ}
→ Γ ⊢ t ∶ A → Γ ⊢ s ∶ B
→ Γ ⊢ 𝑝⟨ t , s ⟩ ∶ (A ∧ B)
𝒑²⟨_,_⟩ {t} {s} =
𝒑ⁿ⟨_,_⟩ {𝐭 = t ∷ []} {𝐬 = s ∷ []}
𝝅₀²_ : ∀{t A B Γ}
→ Γ ⊢ t ∶ (A ∧ B)
→ Γ ⊢ 𝜋₀ t ∶ A
𝝅₀²_ {t} =
𝝅₀ⁿ_ {𝐭 = t ∷ []}
𝝅₁²_ : ∀{t A B Γ}
→ Γ ⊢ t ∶ (A ∧ B)
→ Γ ⊢ 𝜋₁ t ∶ B
𝝅₁²_ {t} =
𝝅₁ⁿ_ {𝐭 = t ∷ []}
⬆²_ : ∀{t u A Γ}
→ Γ ⊢ t ∶ u ∶ A
→ Γ ⊢ ⇑ t ∶ ! u ∶ u ∶ A
⬆²_ {t} =
⬆ⁿ_ {𝐭 = t ∷ []}
⬇²_ : ∀{t u A Γ}
→ Γ ⊢ t ∶ u ∶ A
→ Γ ⊢ ⇓ t ∶ A
⬇²_ {t} =
⬇ⁿ_ {𝐭 = t ∷ []}
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 3
✹³_ : ∀{t₂ t A Γ}
→ Γ ⊢ t₂ ∶ t ∶ ⊥
→ Γ ⊢ ✴² t₂ ∶ ✴ t ∶ A
✹³_ {t₂} {t} =
✹ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
𝝀³_ : ∀{t₂ t A B Γ}
→ Γ , ⟨ 2 , A ⟩ ⊢ t₂ ∶ t ∶ B
→ Γ ⊢ 𝜆² t₂ ∶ 𝜆 t ∶ (A ⊃ B)
𝝀³_ {t₂} {t} =
𝝀ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
_∙³_ : ∀{t₂ t s₂ s A B Γ}
→ Γ ⊢ t₂ ∶ t ∶ (A ⊃ B) → Γ ⊢ s₂ ∶ s ∶ A
→ Γ ⊢ t₂ ∘² s₂ ∶ t ∘ s ∶ B
_∙³_ {t₂} {t} {s₂} {s} =
_∙ⁿ_ {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []}
𝒑³⟨_,_⟩ : ∀{t₂ t s₂ s A B Γ}
→ Γ ⊢ t₂ ∶ t ∶ A → Γ ⊢ s₂ ∶ s ∶ B
→ Γ ⊢ 𝑝²⟨ t₂ , s₂ ⟩ ∶ 𝑝⟨ t , s ⟩ ∶ (A ∧ B)
𝒑³⟨_,_⟩ {t₂} {t} {s₂} {s} =
𝒑ⁿ⟨_,_⟩ {𝐭 = t₂ ∷ t ∷ []} {𝐬 = s₂ ∷ s ∷ []}
𝝅₀³_ : ∀{t₂ t A B Γ}
→ Γ ⊢ t₂ ∶ t ∶ (A ∧ B)
→ Γ ⊢ 𝜋₀² t₂ ∶ 𝜋₀ t ∶ A
𝝅₀³_ {t₂} {t} =
𝝅₀ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
𝝅₁³_ : ∀{t₂ t A B Γ}
→ Γ ⊢ t₂ ∶ t ∶ (A ∧ B)
→ Γ ⊢ 𝜋₁² t₂ ∶ 𝜋₁ t ∶ B
𝝅₁³_ {t₂} {t} =
𝝅₁ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
⬆³_ : ∀{t₂ t u A Γ}
→ Γ ⊢ t₂ ∶ t ∶ u ∶ A
→ Γ ⊢ ⇑² t₂ ∶ ⇑ t ∶ ! u ∶ u ∶ A
⬆³_ {t₂} {t} =
⬆ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
⬇³_ : ∀{t₂ t u A Γ}
→ Γ ⊢ t₂ ∶ t ∶ u ∶ A
→ Γ ⊢ ⇓² t₂ ∶ ⇓ t ∶ A
⬇³_ {t₂} {t} =
⬇ⁿ_ {𝐭 = t₂ ∷ t ∷ []}
-- --------------------------------------------------------------------------
--
-- Notation for typed terms at level 4
✹⁴_ : ∀{t₃ t₂ t A Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ ⊥
→ Γ ⊢ ✴³ t₃ ∶ ✴² t₂ ∶ ✴ t ∶ A
✹⁴_ {t₃} {t₂} {t} =
✹ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
𝝀⁴_ : ∀{t₃ t₂ t A B Γ}
→ Γ , ⟨ 3 , A ⟩ ⊢ t₃ ∶ t₂ ∶ t ∶ B
→ Γ ⊢ 𝜆³ t₃ ∶ 𝜆² t₂ ∶ 𝜆 t ∶ (A ⊃ B)
𝝀⁴_ {t₃} {t₂} {t} =
𝝀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
_∙⁴_ : ∀{t₃ t₂ t s₃ s₂ s A B Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ (A ⊃ B) → Γ ⊢ s₃ ∶ s₂ ∶ s ∶ A
→ Γ ⊢ t₃ ∘³ s₃ ∶ t₂ ∘² s₂ ∶ t ∘ s ∶ B
_∙⁴_ {t₃} {t₂} {t} {s₃} {s₂} {s} =
_∙ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []}
𝒑⁴⟨_,_⟩ : ∀{t₃ t₂ t s₃ s₂ s A B Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ A → Γ ⊢ s₃ ∶ s₂ ∶ s ∶ B
→ Γ ⊢ 𝑝³⟨ t₃ , s₃ ⟩ ∶ 𝑝²⟨ t₂ , s₂ ⟩ ∶ 𝑝⟨ t , s ⟩ ∶ (A ∧ B)
𝒑⁴⟨_,_⟩ {t₃} {t₂} {t} {s₃} {s₂} {s} =
𝒑ⁿ⟨_,_⟩ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []} {𝐬 = s₃ ∷ s₂ ∷ s ∷ []}
𝝅₀⁴_ : ∀{t₃ t₂ t A B Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ (A ∧ B)
→ Γ ⊢ 𝜋₀³ t₃ ∶ 𝜋₀² t₂ ∶ 𝜋₀ t ∶ A
𝝅₀⁴_ {t₃} {t₂} {t} =
𝝅₀ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
𝝅₁⁴_ : ∀{t₃ t₂ t A B Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ (A ∧ B)
→ Γ ⊢ 𝜋₁³ t₃ ∶ 𝜋₁² t₂ ∶ 𝜋₁ t ∶ B
𝝅₁⁴_ {t₃} {t₂} {t} =
𝝅₁ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
⬆⁴_ : ∀{t₃ t₂ t u A Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ u ∶ A
→ Γ ⊢ ⇑³ t₃ ∶ ⇑² t₂ ∶ ⇑ t ∶ ! u ∶ u ∶ A
⬆⁴_ {t₃} {t₂} {t} =
⬆ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
⬇⁴_ : ∀{t₃ t₂ t u A Γ}
→ Γ ⊢ t₃ ∶ t₂ ∶ t ∶ u ∶ A
→ Γ ⊢ ⇓³ t₃ ∶ ⇓² t₂ ∶ ⇓ t ∶ A
⬇⁴_ {t₃} {t₂} {t} =
⬇ⁿ_ {𝐭 = t₃ ∷ t₂ ∷ t ∷ []}
-- --------------------------------------------------------------------------
--
-- Realisations of some S4 theorems at levels 1, 2, and 3
module SKICombinators where
-- S4: A ⊃ A
I : ∀{A}
→ ⊩ A ⊃ A
I = 𝝀 𝒗 𝟎
-- S4: □ (A ⊃ A)
I² : ∀{A}
→ ⊩ 𝜆 𝑣 0
∶ (A ⊃ A)
I² = 𝝀² 𝒗 𝟎
-- S4: □ □ (A ⊃ A)
I³ : ∀{A}
→ ⊩ 𝜆² 𝑣 0
∶ 𝜆 𝑣 0
∶ (A ⊃ A)
I³ = 𝝀³ 𝒗 𝟎
-- S4: A ⊃ B ⊃ A
K : ∀{A B}
→ ⊩ A ⊃ B ⊃ A
K = 𝝀 𝝀 𝒗 𝟏
-- S4: □ (A ⊃ B ⊃ A)
K² : ∀{A B}
→ ⊩ 𝜆 𝜆 𝑣 1
∶ (A ⊃ B ⊃ A)
K² = 𝝀² 𝝀² 𝒗 𝟏
-- S4: □ □ (A ⊃ B ⊃ A)
K³ : ∀{A B}
→ ⊩ 𝜆² 𝜆² 𝑣 1
∶ 𝜆 𝜆 𝑣 1
∶ (A ⊃ B ⊃ A)
K³ = 𝝀³ 𝝀³ 𝒗 𝟏
-- S4: (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C
S : ∀{A B C}
→ ⊩ (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C
S = 𝝀 𝝀 𝝀 (𝒗 𝟐 ∙ 𝒗 𝟎) ∙ (𝒗 𝟏 ∙ 𝒗 𝟎)
-- S4: □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S² : ∀{A B C}
→ ⊩ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S² = 𝝀² 𝝀² 𝝀² (𝒗 𝟐 ∙² 𝒗 𝟎) ∙² (𝒗 𝟏 ∙² 𝒗 𝟎)
-- S4: □ □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S³ : ∀{A B C}
→ ⊩ 𝜆² 𝜆² 𝜆² (𝑣 2 ∘² 𝑣 0) ∘² (𝑣 1 ∘² 𝑣 0)
∶ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S³ = 𝝀³ 𝝀³ 𝝀³ (𝒗 𝟐 ∙³ 𝒗 𝟎) ∙³ (𝒗 𝟏 ∙³ 𝒗 𝟎)
-- --------------------------------------------------------------------------
--
-- Realisations of S4 axioms at levels 1 and 2
module S4Axioms where
-- S4: □ (A ⊃ B) ⊃ □ A ⊃ □ B
K : ∀{f x A B}
→ ⊩ (f ∶ (A ⊃ B)) ⊃ x ∶ A ⊃ (f ∘ x) ∶ B
K = 𝝀 𝝀 (𝒗 𝟏 ∙² 𝒗 𝟎)
-- S4: □ (□ (A ⊃ B) ⊃ □ A ⊃ □ B)
K² : ∀{f x A B}
→ ⊩ 𝜆 𝜆 𝑣 1 ∘² 𝑣 0
∶ (f ∶ (A ⊃ B) ⊃ x ∶ A ⊃ (f ∘ x) ∶ B)
K² = 𝝀² 𝝀² (𝒗 𝟏 ∙³ 𝒗 𝟎)
-- S4: □ A ⊃ A
T : ∀{x A}
→ ⊩ x ∶ A ⊃ A
T = 𝝀 ⬇ 𝒗 𝟎
-- S4: □ (□ A ⊃ A)
T² : ∀{x A}
→ ⊩ 𝜆 ⇓ 𝑣 0
∶ (x ∶ A ⊃ A)
T² = 𝝀² ⬇² 𝒗 𝟎
-- S4: □ A ⊃ □ □ A
#4 : ∀{x A}
→ ⊩ x ∶ A ⊃ ! x ∶ x ∶ A
#4 = 𝝀 ⬆ 𝒗 𝟎
-- S4: □ (□ A ⊃ □ □ A)
#4² : ∀{x A}
→ ⊩ 𝜆 ⇑ 𝑣 0
∶ (x ∶ A ⊃ ! x ∶ x ∶ A)
#4² = 𝝀² ⬆² 𝒗 𝟎
-- --------------------------------------------------------------------------
--
-- Terms of example 1 (p. 28 [1])
module Example1 where
-- S4: □ (□ A ⊃ A)
E11 : ∀{x A}
→ ⊩ 𝜆 ⇓ 𝑣 0
∶ (x ∶ A ⊃ A)
E11 = S4Axioms.T²
-- S4: □ (□ A ⊃ □ □ A)
E12 : ∀{x A}
→ ⊩ 𝜆 ⇑ 𝑣 0
∶ (x ∶ A ⊃ ! x ∶ x ∶ A)
E12 = S4Axioms.#4²
-- S4: □ □ (A ⊃ B ⊃ A ∧ B)
E13 : ∀{A B}
→ ⊩ 𝜆² 𝜆² 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩
∶ 𝜆 𝜆 𝑝⟨ 𝑣 1 , 𝑣 0 ⟩
∶ (A ⊃ B ⊃ A ∧ B)
E13 = 𝝀³ 𝝀³ 𝒑³⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩
-- S4: □ (□ A ⊃ □ B ⊃ □ □ (A ∧ B))
E14 : ∀{x y A B}
→ ⊩ 𝜆 𝜆 ⇑ 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩
∶ (x ∶ A ⊃ y ∶ B ⊃ ! 𝑝⟨ x , y ⟩ ∶ 𝑝⟨ x , y ⟩ ∶ (A ∧ B))
E14 = 𝝀² 𝝀² ⬆² 𝒑³⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩
-- --------------------------------------------------------------------------
--
-- Realisations of some more S4 theorems
module Example1a where
-- S4: □ (□ A ⊃ □ B ⊃ □ (A ∧ B))
E14a : ∀{x y A B}
→ ⊩ 𝜆 𝜆 𝑝²⟨ 𝑣 1 , 𝑣 0 ⟩
∶ (x ∶ A ⊃ y ∶ B ⊃ 𝑝⟨ x , y ⟩ ∶ (A ∧ B))
E14a = 𝝀² 𝝀² 𝒑³⟨ 𝒗 𝟏 , 𝒗 𝟎 ⟩
-- S4: □ (□ A ∧ □ B ⊃ □ □ (A ∧ B))
E14b : ∀{x y A B}
→ ⊩ 𝜆 ⇑ 𝑝²⟨ 𝜋₀ 𝑣 0 , 𝜋₁ 𝑣 0 ⟩
∶ (x ∶ A ∧ y ∶ B ⊃ ! 𝑝⟨ x , y ⟩ ∶ 𝑝⟨ x , y ⟩ ∶ (A ∧ B))
E14b = 𝝀² ⬆² 𝒑³⟨ 𝝅₀² 𝒗 𝟎 , 𝝅₁² 𝒗 𝟎 ⟩
-- S4: □ (□ A ∧ □ B ⊃ □ (A ∧ B))
E14c : ∀{x y A B}
→ ⊩ 𝜆 𝑝²⟨ 𝜋₀ 𝑣 0 , 𝜋₁ 𝑣 0 ⟩
∶ (x ∶ A ∧ y ∶ B ⊃ 𝑝⟨ x , y ⟩ ∶ (A ∧ B))
E14c = 𝝀² 𝒑³⟨ 𝝅₀² 𝒗 𝟎 , 𝝅₁² 𝒗 𝟎 ⟩
-- --------------------------------------------------------------------------
--
-- Terms of example 2 (pp. 31–32 [1])
module Example2 where
E2 : ∀{x A}
→ ⊩ 𝜆² ⇓² ⇑² 𝑣 0
∶ 𝜆 ⇓ ⇑ 𝑣 0
∶ (x ∶ A ⊃ x ∶ A)
E2 = 𝝀³ ⬇³ ⬆³ 𝒗 𝟎
E2a : ∀{x A}
→ ⊩ 𝜆² 𝑣 0
∶ 𝜆 𝑣 0
∶ (x ∶ A ⊃ x ∶ A)
E2a = 𝝀³ 𝒗 𝟎
-- --------------------------------------------------------------------------
--
-- Quotation
quot : ∀{B Γ} → Γ ⊢ B → Tm
quot (✹ⁿ_ {n} 𝒟) = ✴[ suc n ] quot 𝒟
quot (𝒗_ {x = x} i) = 𝑣 x
quot (𝝀ⁿ_ {n} 𝒟) = 𝜆[ suc n ] quot 𝒟
quot (_∙ⁿ_ {n} 𝒟 𝒞) = quot 𝒟 ∘[ suc n ] quot 𝒞
quot (𝒑ⁿ⟨_,_⟩ {n} 𝒟 𝒞) = 𝑝[ suc n ]⟨ quot 𝒟 , quot 𝒞 ⟩
quot (𝝅₀ⁿ_ {n} 𝒟) = 𝜋₀[ suc n ] quot 𝒟
quot (𝝅₁ⁿ_ {n} 𝒟) = 𝜋₁[ suc n ] quot 𝒟
quot (⬆ⁿ_ {n} 𝒟) = ⇑[ suc n ] quot 𝒟
quot (⬇ⁿ_ {n} 𝒟) = ⇓[ suc n ] quot 𝒟
-- --------------------------------------------------------------------------
--
-- Internalisation (theorem 1, p. 29 [1]; lemma 5.4, pp. 9–10 [2])
-- A , A₂ , … , Aₘ ⇒
-- x ∶ A , x₂ ∶ A₂ , … , xₘ ∶ Aₘ
prefix : Cx → Cx
prefix ∅ = ∅
prefix (Γ , ⟨ n , A ⟩) = prefix Γ , ⟨ suc n , A ⟩
-- yₙ ∶ yₙ₋₁ ∶ … ∶ y ∶ A⁰ₖ ∈ A , A₂ , … , Aₘ ⇒
-- xₖ ∶ yₙ ∶ yₙ₋₁ ∶ … ∶ y ∶ A⁰ₖ ∈ x ∶ A, x₂ ∶ A₂ , … , xₘ ∶ Aₘ
int∈ : ∀{n x A Γ}
→ ⟨ n , A ⟩ ∈[ x ] Γ
→ ⟨ suc n , A ⟩ ∈[ x ] prefix Γ
int∈ 𝐙 = 𝐙
int∈ (𝐒 i) = 𝐒 (int∈ i)
-- A , A₂ , … , Aₘ ⊢ B ⇒
-- x ∶ A , x₂ ∶ A₂ , … xₘ ∶ Aₘ ⊢ t (x , x₂ , … , xₘ) ∶ B
int⊢ : ∀{B Γ}
→ (𝒟 : Γ ⊢ B)
→ prefix Γ ⊢ quot 𝒟 ∶ B
int⊢ (✹ⁿ_ {𝐭 = 𝐭} 𝒟) =
✹ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (𝒗 i) =
𝒗 int∈ i
int⊢ (𝝀ⁿ_ {𝐭 = 𝐭} 𝒟) =
𝝀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
_∙ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} (int⊢ 𝒟) (int⊢ 𝒞)
int⊢ (𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
𝒑ⁿ⟨_,_⟩ {𝐭 = quot 𝒟 ∷ 𝐭} {𝐬 = quot 𝒞 ∷ 𝐬} (int⊢ 𝒟) (int⊢ 𝒞)
int⊢ (𝝅₀ⁿ_ {𝐭 = 𝐭} 𝒟) =
𝝅₀ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (𝝅₁ⁿ_ {𝐭 = 𝐭} 𝒟) =
𝝅₁ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (⬆ⁿ_ {𝐭 = 𝐭} 𝒟) =
⬆ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
int⊢ (⬇ⁿ_ {𝐭 = 𝐭} 𝒟) =
⬇ⁿ_ {𝐭 = quot 𝒟 ∷ 𝐭} (int⊢ 𝒟)
-- --------------------------------------------------------------------------
--
-- Weakening
wk∈ : ∀{x A Δ}
→ (Γ : Cx) → A ∈[ x ] (∅ „ Γ)
→ A ∈[ x ] (Δ „ Γ)
wk∈ ∅ ()
wk∈ (Γ , A) 𝐙 = 𝐙
wk∈ (Γ , A) (𝐒 i) = 𝐒 (wk∈ Γ i)
wk⊢ : ∀{A Δ}
→ (Γ : Cx) → ∅ „ Γ ⊢ A
→ Δ „ Γ ⊢ A
wk⊢ Γ (✹ⁿ_ {𝐭 = 𝐭} 𝒟) =
✹ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (𝒗 i) =
𝒗 wk∈ Γ i
wk⊢ Γ (𝝀ⁿ_ {n} {𝐭} {A} 𝒟) =
𝝀ⁿ_ {𝐭 = 𝐭} (wk⊢ (Γ , ⟨ n , A ⟩) 𝒟)
wk⊢ Γ (_∙ⁿ_ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
_∙ⁿ_ {𝐭 = 𝐭} {𝐬} (wk⊢ Γ 𝒟) (wk⊢ Γ 𝒞)
wk⊢ Γ (𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬 = 𝐬} 𝒟 𝒞) =
𝒑ⁿ⟨_,_⟩ {𝐭 = 𝐭} {𝐬} (wk⊢ Γ 𝒟) (wk⊢ Γ 𝒞)
wk⊢ Γ (𝝅₀ⁿ_ {𝐭 = 𝐭} 𝒟) =
𝝅₀ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (𝝅₁ⁿ_ {𝐭 = 𝐭} 𝒟) =
𝝅₁ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (⬆ⁿ_ {𝐭 = 𝐭} 𝒟) =
⬆ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
wk⊢ Γ (⬇ⁿ_ {𝐭 = 𝐭} 𝒟) =
⬇ⁿ_ {𝐭 = 𝐭} (wk⊢ Γ 𝒟)
-- --------------------------------------------------------------------------
--
-- Constructive necessitation (corollary 5.5, p. 10 [2])
nec : ∀{A}
→ (𝒟 : ∅ ⊢ A)
→ ⊩ quot 𝒟 ∶ A
nec 𝒟 = wk⊢ ∅ (int⊢ 𝒟)
-- --------------------------------------------------------------------------
--
-- Example necessitated terms at levels 2, 3, and 4
module NecExample where
-- S4: □ (A ⊃ A)
I² : ∀{A}
→ ⊩ 𝜆 𝑣 0
∶ (A ⊃ A)
I² = nec SKICombinators.I
-- S4: □ □ (A ⊃ A)
I³ : ∀{A}
→ ⊩ 𝜆² 𝑣 0
∶ 𝜆 𝑣 0
∶ (A ⊃ A)
I³ = nec I²
-- S4: □ □ □ (A ⊃ A)
I⁴ : ∀{A}
→ ⊩ 𝜆³ 𝑣 0
∶ 𝜆² 𝑣 0
∶ 𝜆 𝑣 0
∶ (A ⊃ A)
I⁴ = nec I³
-- S4: □ (A ⊃ B ⊃ A)
K² : ∀{A B}
→ ⊩ 𝜆 𝜆 𝑣 1
∶ (A ⊃ B ⊃ A)
K² = nec SKICombinators.K
-- S4: □ □ (A ⊃ B ⊃ A)
K³ : ∀{A B}
→ ⊩ 𝜆² 𝜆² 𝑣 1
∶ 𝜆 𝜆 𝑣 1
∶ (A ⊃ B ⊃ A)
K³ = nec K²
-- S4: □ □ □ (A ⊃ B ⊃ A)
K⁴ : ∀{A B}
→ ⊩ 𝜆³ 𝜆³ 𝑣 1
∶ 𝜆² 𝜆² 𝑣 1
∶ 𝜆 𝜆 𝑣 1
∶ (A ⊃ B ⊃ A)
K⁴ = nec K³
-- S4: □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S² : ∀{A B C}
→ ⊩ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S² = nec SKICombinators.S
-- S4: □ □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S³ : ∀{A B C}
→ ⊩ 𝜆² 𝜆² 𝜆² (𝑣 2 ∘² 𝑣 0) ∘² (𝑣 1 ∘² 𝑣 0)
∶ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S³ = nec S²
-- S4: □ □ □ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S⁴ : ∀{A B C}
→ ⊩ 𝜆³ 𝜆³ 𝜆³ (𝑣 2 ∘³ 𝑣 0) ∘³ (𝑣 1 ∘³ 𝑣 0)
∶ 𝜆² 𝜆² 𝜆² (𝑣 2 ∘² 𝑣 0) ∘² (𝑣 1 ∘² 𝑣 0)
∶ 𝜆 𝜆 𝜆 (𝑣 2 ∘ 𝑣 0) ∘ (𝑣 1 ∘ 𝑣 0)
∶ ((A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C)
S⁴ = nec S³
module Negation where
E1 : ∀{A}
→ ⊩ ⊥ ⊃ A
E1 = 𝝀 ✹ 𝒗 𝟎
E1² : ∀{A}
→ ⊩ 𝜆 ✴ 𝑣 0
∶ (⊥ ⊃ A)
E1² = 𝝀² ✹² 𝒗 𝟎
E2 : ∀{x y A}
→ ⊩ x ∶ ⊥ ⊃ y ∶ A
E2 = 𝝀 {!✹² ?!}
-}